Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
import numpy as np | |
from sepa import parser | |
import re | |
##################################################################################################################################### | |
##################################################################################################################################### | |
##################################################################################################################################### | |
def full_function(xml_file): | |
#for gradio: swap with xml_file for local testing | |
full_name = xml_file.name | |
#full_name = xml_file | |
print("File name in gradio is ") | |
print(full_name) | |
def strip_namespace(xml): | |
return re.sub(' xmlns="[^"]+"', '', xml, count=1) | |
# Read file | |
with open(full_name, 'r') as f: | |
input_data = f.read() | |
# Parse the bank statement XML to dictionary | |
print("Parse full xml string") | |
camt_dict = parser.parse_string(parser.bank_to_customer_statement, bytes(strip_namespace(input_data), 'utf8')) | |
statements = pd.DataFrame.from_dict(camt_dict['statements']) | |
all_entries = [] | |
dd_all = [] | |
print("Start loop all the transactions and add to df") | |
for i,_ in statements.iterrows(): | |
if 'entries' in camt_dict['statements'][i]: | |
#create empty df | |
df = pd.DataFrame() | |
dd = pd.DataFrame.from_records(camt_dict['statements'][i]['entries']) | |
df['reference'] = dd['reference'] | |
df['credit_debit_indicator'] = dd['credit_debit_indicator'] | |
df['status'] = dd['status'] | |
df['account_servicer_reference'] = dd['account_servicer_reference'] | |
iban = camt_dict['statements'][i]['account']['id']['iban'] | |
name = camt_dict['statements'][i]['account']['name'] | |
df['iban'] = iban | |
df['name'] = name | |
df['currency'] = dd['amount'].str['currency'] | |
df['amount'] = dd['amount'].str['_value'] | |
df['reference'] = dd['reference'] | |
df['value_date'] = dd['value_date'].str['date'] | |
df['value_date'] = pd.to_datetime(df['value_date']).dt.strftime('%Y-%m-%d') | |
df['booking_date'] = dd['booking_date'].str['date'] | |
df['booking_date'] = pd.to_datetime(df['booking_date']).dt.strftime('%Y-%m-%d') | |
#bank transaction code | |
df['proprietary_code'] = dd['bank_transaction_code'].str['proprietary'].str['code'] | |
df['proprietary_issuer'] = dd['bank_transaction_code'].str['proprietary'].str['issuer'] | |
df['domain_code'] = dd['bank_transaction_code'].str['domain'].str['code'] | |
df['family_code'] = dd['bank_transaction_code'].str['domain'].str['family'].str['code'] | |
df['sub_family_code'] = dd['bank_transaction_code'].str['domain'].str['family'].str['sub_family_code'] | |
#transaction details | |
df['debtor_name'] = dd['entry_details'].str[0].str['transaction_details'].str[0].str['related_parties'].str['debtor'].str['name'] | |
df['debtor_iban'] = dd['entry_details'].str[0].str['transaction_details'].str[0].str['related_parties'].str['debtor_account'].str['id'].str['iban'] | |
df['creditor_name'] = dd['entry_details'].str[0].str['transaction_details'].str[0].str['related_parties'].str['creditor'].str['name'] | |
df['creditor_iban'] = dd['entry_details'].str[0].str['transaction_details'].str[0].str['related_parties'].str['creditor_account'].str['id'].str['iban'] | |
df['bic'] = dd['entry_details'].str[0].str['transaction_details'].str[0].str['related_agents'].str['debtor_agent'].str['financial_institution'].str['bic'] | |
df['remittance_information'] = dd['entry_details'].str[0].str['transaction_details'].str[0].str['remittance_information'].str['unstructured'].str[0] | |
df['account_servicer_reference'] = dd['entry_details'].str[0].str['transaction_details'].str[0].str['refs'].str['account_servicer_reference'] | |
df['end_to_end_id'] = dd['entry_details'].str[0].str['transaction_details'].str[0].str['refs'].str['end_to_end_id'] | |
all_entries.append(df) | |
print("merge the list into df") | |
df_entries = pd.concat(all_entries) | |
#drop duplicates | |
print("remove duplicate rows") | |
df_entries = df_entries.drop_duplicates(subset=['reference'], keep='last') | |
print("all done") | |
df_entries_example = df_entries[['reference', 'credit_debit_indicator', 'iban', 'name', 'currency', 'amount', 'value_date', 'debtor_name', 'debtor_iban', 'creditor_name', 'creditor_iban', 'remittance_information']].head(20) | |
#print(df_entries_example) | |
return df_entries, df_entries_example | |
##################################################################################################################################### | |
##################################################################################################################################### | |
##################################################################################################################################### | |
def function_code_count(df_entries): | |
#count number of values | |
df_proprietary_code_count = df_entries['proprietary_code'].value_counts()#.to_frame() | |
df_proprietary_code_count = pd.DataFrame(df_proprietary_code_count).reset_index(names="code") | |
df_proprietary_code_count.rename(columns={"proprietary_code": "count"}, inplace=True) | |
return df_proprietary_code_count | |
##################################################################################################################################### | |
##################################################################################################################################### | |
##################################################################################################################################### | |
def export_csv(xml_file): | |
df_entries, df_entries_example = full_function(xml_file) | |
df_entries.to_csv("./output.csv") | |
out = gr.File(value="output.csv", visible=True) | |
#count codes | |
df_proprietary_code_count = function_code_count(df_entries) | |
return out, df_entries_example, df_proprietary_code_count | |
##################################################################################################################################### | |
##################################################################################################################################### | |
##################################################################################################################################### | |
desc = "Upload XML file, convert to .csv file, and analyze transactions" | |
with gr.Blocks() as demo: | |
xml_file = gr.File(label = "Upload XML file here") | |
#output table. | |
df_entries_example = gr.DataFrame(label="Example output table, top 20 rows (not all columns)") | |
with gr.Row(): | |
#export_button = gr.Button("Export") | |
out = gr.File(label = "Output file", interactive=False, visible=False) | |
with gr.Row(): | |
df_proprietary_code_count = gr.DataFrame(label="Number of transactions per code") | |
#submit_btn = gr.Button("Run analysis on XML file") | |
#export_button.click(export_csv, df_entries, csv) | |
gr.Interface(fn=export_csv, inputs=xml_file, outputs=[out, df_entries_example, df_proprietary_code_count], title=desc).launch(share=True, debug =True) | |