Detsutut commited on
Commit
739d38d
1 Parent(s): 7fa0e76

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -12
app.py CHANGED
@@ -5,8 +5,8 @@ import torch
5
  import re
6
 
7
  # Initialize the model
8
- model = AutoModelForCausalLM.from_pretrained("Detsutut/Igea-1B-instruct-GGUF-Q4", model_file="unsloth.Q4_K_M.gguf", model_type="mistral", hf=True)
9
- tokenizer = AutoTokenizer.from_pretrained( "Detsutut/Igea-1B-instruct")
10
 
11
 
12
  gen_pipeline = pipeline(
@@ -25,18 +25,19 @@ alpaca_instruct_prompt = """
25
  {}"""
26
 
27
  # Define the function to generate text
28
- def generate_text(input_text, max_new_tokens=30, temperature=1, top_p=0.95):
29
 
30
- prompt = alpaca_instruct_prompt.format("Di seguito è riportata un'istruzione che descrive un compito. Scrivi una risposta che completi in modo appropriato la richiesta.",
31
- input_text,
32
- ""
33
- )
 
 
34
 
35
  output = gen_pipeline(
36
  input_text,
37
  max_new_tokens=max_new_tokens,
38
  temperature=temperature,
39
- top_p=top_p,
40
  return_full_text = False
41
  )
42
  generated_text = output[0]['generated_text']
@@ -48,10 +49,10 @@ def generate_text(input_text, max_new_tokens=30, temperature=1, top_p=0.95):
48
 
49
  # Create the Gradio interface
50
  input_text = gr.Textbox(lines=2, placeholder="Enter your request here...", label="Input Text")
 
51
 
52
- max_new_tokens = gr.Slider(minimum=1, maximum=200, value=30, step=1, label="Max New Tokens")
53
  temperature = gr.Slider(minimum=0.1, maximum=2.0, value=1.0, step=0.1, label="Temperature")
54
- top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.95, step=0.01, label="Top-p")
55
 
56
  with gr.Blocks(css="#outbox { border-radius: 8px !important; border: 1px solid #e5e7eb !important; padding: 8px !important; text-align:center !important;}") as iface:
57
  gr.Markdown("# Igea Instruct Interface ⚕️🩺")
@@ -61,11 +62,11 @@ with gr.Blocks(css="#outbox { border-radius: 8px !important; border: 1px solid #
61
  with gr.Accordion("Advanced Options", open=False):
62
  max_new_tokens.render()
63
  temperature.render()
64
- top_p.render()
65
  output = gr.HTML(label="Generated Text",elem_id="outbox")
66
 
67
  btn = gr.Button("Generate")
68
- btn.click(generate_text, [input_text, max_new_tokens, temperature, top_p], output)
69
 
70
  # Launch the interface
71
  if __name__ == "__main__":
 
5
  import re
6
 
7
  # Initialize the model
8
+ model = AutoModelForCausalLM.from_pretrained("Detsutut/Igea-1B-instruct-v0.1-GGUF", model_file="unsloth.Q4_K_M.gguf", model_type="mistral", hf=True)
9
+ tokenizer = AutoTokenizer.from_pretrained( "Detsutut/Igea-1B-instruct-v0.1")
10
 
11
 
12
  gen_pipeline = pipeline(
 
25
  {}"""
26
 
27
  # Define the function to generate text
28
+ def generate_text(input_text, max_new_tokens=100, temperature=1, system_prompt=""):
29
 
30
+ if len(system_prompt)>0:
31
+ system_str = system_prompt
32
+ else:
33
+ system_str = "Di seguito è riportata un'istruzione che descrive un compito. Scrivi una risposta che completi in modo appropriato la richiesta."
34
+
35
+ prompt = alpaca_instruct_prompt.format(system_str, input_text,"")
36
 
37
  output = gen_pipeline(
38
  input_text,
39
  max_new_tokens=max_new_tokens,
40
  temperature=temperature,
 
41
  return_full_text = False
42
  )
43
  generated_text = output[0]['generated_text']
 
49
 
50
  # Create the Gradio interface
51
  input_text = gr.Textbox(lines=2, placeholder="Enter your request here...", label="Input Text")
52
+ system_prompt = gr.Textbox(lines=2, placeholder="Enter custom system prompt...", label="Custom System Prompt")
53
 
54
+ max_new_tokens = gr.Slider(minimum=1, maximum=200, value=100, step=1, label="Max New Tokens")
55
  temperature = gr.Slider(minimum=0.1, maximum=2.0, value=1.0, step=0.1, label="Temperature")
 
56
 
57
  with gr.Blocks(css="#outbox { border-radius: 8px !important; border: 1px solid #e5e7eb !important; padding: 8px !important; text-align:center !important;}") as iface:
58
  gr.Markdown("# Igea Instruct Interface ⚕️🩺")
 
62
  with gr.Accordion("Advanced Options", open=False):
63
  max_new_tokens.render()
64
  temperature.render()
65
+ system_prompt.render()
66
  output = gr.HTML(label="Generated Text",elem_id="outbox")
67
 
68
  btn = gr.Button("Generate")
69
+ btn.click(generate_text, [input_text, max_new_tokens, temperature, system_prompt], output)
70
 
71
  # Launch the interface
72
  if __name__ == "__main__":