Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
import torch | |
import re | |
# Initialize the model | |
model_id = "Detsutut/Igea-350M-v0.0.1" | |
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_8bit=True, device_map='auto') | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
gen_pipeline = pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer | |
) | |
# Define the function to generate text | |
def generate_text(input_text, max_new_tokens, temperature, top_p, split_output): | |
if split_output: | |
max_new_tokens=30 | |
top_p=0.95 | |
output = pipeline( | |
input_text, | |
max_new_tokens=max_new_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
return_full_text = False | |
) | |
generated_text = output[0]['generated_text'] | |
if split_output: | |
sentences = re.split('(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', generated_text) | |
if sentences: | |
generated_text = sentences[0] | |
return f"<span>{input_text}</span><b style='color: blue;'>{generated_text}</b>" | |
# Create the Gradio interface | |
input_text = gr.Textbox(lines=2, placeholder="Enter your text here...", label="Input Text") | |
max_new_tokens = gr.Slider(minimum=1, maximum=200, value=30, step=1, label="Max New Tokens") | |
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=1.0, step=0.1, label="Temperature") | |
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.95, step=0.01, label="Top-p") | |
split_output = gr.Checkbox(label="Quick single-sentence output", value=True) | |
with gr.Blocks(css="#outbox { border-radius: 8px !important; border: 1px solid #e5e7eb !important; padding: 8px !important; text-align:center !important;}") as iface: | |
gr.Markdown("# Igea Text Generation Interface ⚕️🩺") | |
gr.Markdown("⚠️ 🐢💬 This model runs on a **hardware-limited**, free-tier HuggingFace space, resulting in a **low output token throughput** (approx. 1 token/s)") | |
input_text.render() | |
with gr.Accordion("Advanced Options", open=False): | |
max_new_tokens.render() | |
temperature.render() | |
top_p.render() | |
split_output.render() | |
output = gr.HTML(label="Generated Text",elem_id="outbox") | |
btn = gr.Button("Generate") | |
btn.click(generate_text, [input_text, max_new_tokens, temperature, top_p, split_output], output) | |
# Launch the interface | |
if __name__ == "__main__": | |
iface.launch(inline=True) | |