solar_chatbot / app.py
bluewordcoder's picture
Add main chatbot code
6f61b27 verified
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
import torch
import gradio as gr
class SunChatbot:
def __init__(self, model_name="facebook/blenderbot-400M-distill"):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(self.device)
self.nlp_pipeline = pipeline("text2text-generation", model=self.model, tokenizer=self.tokenizer, device=0 if torch.cuda.is_available() else -1)
def shine_light_on_errors(self, user_input):
"""Identifies potential errors in input and provides suggestions."""
correction_prompt = f"Correct any mistakes in the following text: {user_input}"
return self.nlp_pipeline(correction_prompt, max_length=100)[0]['generated_text']
def analyze_patterns(self, user_input):
"""Detects patterns and generates insightful analysis."""
pattern_prompt = f"Analyze the patterns in the following data: {user_input}"
return self.nlp_pipeline(pattern_prompt, max_length=150)[0]['generated_text']
def provide_solar_insights(self, user_query):
"""Offers futuristic techniques and correlations in solar technologies."""
solar_prompt = f"Provide innovative insights on solar technologies: {user_query}"
return self.nlp_pipeline(solar_prompt, max_length=200)[0]['generated_text']
def inspire_creativity(self, user_prompt):
"""Provides dynamic brainstorming assistance."""
creativity_prompt = f"Give me a creative idea related to: {user_prompt}"
return self.nlp_pipeline(creativity_prompt, max_length=150)[0]['generated_text']
def handle_tasks_seamlessly(self, task_list):
"""Manages multiple tasks efficiently."""
task_prompt = f"Manage these tasks efficiently: {task_list}"
return self.nlp_pipeline(task_prompt, max_length=200)[0]['generated_text']
def quick_or_detailed_response(self, user_query, detail_level="quick"):
"""Provides concise or detailed responses based on the user's preference."""
if detail_level == "quick":
prompt = f"Provide a concise answer to: {user_query}"
else:
prompt = f"Provide a detailed analysis of: {user_query}"
return self.nlp_pipeline(prompt, max_length=250)[0]['generated_text']
def reframe_negative_thoughts(self, user_input):
"""Reframes negative topics in a constructive light."""
positive_prompt = f"Reframe the following in a positive way: {user_input}"
return self.nlp_pipeline(positive_prompt, max_length=150)[0]['generated_text']
def chatbot_interface(user_input, detail_level):
sun_bot = SunChatbot()
return sun_bot.quick_or_detailed_response(user_input, detail_level)
gr.Interface(
fn=chatbot_interface,
inputs=["text", gr.Radio(["quick", "detailed"], label="Response Detail Level")],
outputs="text",
title="Sun Chatbot",
description="A chatbot that energizes conversations and provides insightful responses inspired by the Sun."
).launch()