Spaces:
Sleeping
Sleeping
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer | |
import torch | |
import gradio as gr | |
class SunChatbot: | |
def __init__(self, model_name="facebook/blenderbot-400M-distill"): | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
self.tokenizer = AutoTokenizer.from_pretrained(model_name) | |
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(self.device) | |
self.nlp_pipeline = pipeline("text2text-generation", model=self.model, tokenizer=self.tokenizer, device=0 if torch.cuda.is_available() else -1) | |
def shine_light_on_errors(self, user_input): | |
"""Identifies potential errors in input and provides suggestions.""" | |
correction_prompt = f"Correct any mistakes in the following text: {user_input}" | |
return self.nlp_pipeline(correction_prompt, max_length=100)[0]['generated_text'] | |
def analyze_patterns(self, user_input): | |
"""Detects patterns and generates insightful analysis.""" | |
pattern_prompt = f"Analyze the patterns in the following data: {user_input}" | |
return self.nlp_pipeline(pattern_prompt, max_length=150)[0]['generated_text'] | |
def provide_solar_insights(self, user_query): | |
"""Offers futuristic techniques and correlations in solar technologies.""" | |
solar_prompt = f"Provide innovative insights on solar technologies: {user_query}" | |
return self.nlp_pipeline(solar_prompt, max_length=200)[0]['generated_text'] | |
def inspire_creativity(self, user_prompt): | |
"""Provides dynamic brainstorming assistance.""" | |
creativity_prompt = f"Give me a creative idea related to: {user_prompt}" | |
return self.nlp_pipeline(creativity_prompt, max_length=150)[0]['generated_text'] | |
def handle_tasks_seamlessly(self, task_list): | |
"""Manages multiple tasks efficiently.""" | |
task_prompt = f"Manage these tasks efficiently: {task_list}" | |
return self.nlp_pipeline(task_prompt, max_length=200)[0]['generated_text'] | |
def quick_or_detailed_response(self, user_query, detail_level="quick"): | |
"""Provides concise or detailed responses based on the user's preference.""" | |
if detail_level == "quick": | |
prompt = f"Provide a concise answer to: {user_query}" | |
else: | |
prompt = f"Provide a detailed analysis of: {user_query}" | |
return self.nlp_pipeline(prompt, max_length=250)[0]['generated_text'] | |
def reframe_negative_thoughts(self, user_input): | |
"""Reframes negative topics in a constructive light.""" | |
positive_prompt = f"Reframe the following in a positive way: {user_input}" | |
return self.nlp_pipeline(positive_prompt, max_length=150)[0]['generated_text'] | |
def chatbot_interface(user_input, detail_level): | |
sun_bot = SunChatbot() | |
return sun_bot.quick_or_detailed_response(user_input, detail_level) | |
gr.Interface( | |
fn=chatbot_interface, | |
inputs=["text", gr.Radio(["quick", "detailed"], label="Response Detail Level")], | |
outputs="text", | |
title="Sun Chatbot", | |
description="A chatbot that energizes conversations and provides insightful responses inspired by the Sun." | |
).launch() | |