Spaces:
Runtime error
Runtime error
from __future__ import annotations | |
import os | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from mmdet.apis import inference_detector, init_detector_from_hf_hub | |
MODEL_DICT = {"faster_rcnn": {"repo_id": "blesot/Faster-R-CNN-Object-detection"}, "mask_rcnn": {"repo_id": "blesot/Mask-RCNN"}} | |
class Model: | |
def __init__(self, model_name: str, device: str | torch.device): | |
self.device = torch.device(device) | |
self._load_all_models_once() | |
self.model_name = model_name | |
self.model = self._load_model(model_name) | |
def _load_all_models_once(self) -> None: | |
for name in MODEL_DICT.keys(): | |
self._load_model(name) | |
def _load_model(self, name: str) -> nn.Module: | |
dic = MODEL_DICT[name] | |
return init_detector_from_hf_hub(dic['repo_id'], device=self.device) | |
def set_model(self, name: str) -> None: | |
if name == self.model_name: | |
return | |
self.model_name = name | |
self.model = self._load_model(name) | |
def detect_and_visualize( | |
self, image: np.ndarray, score_threshold: float | |
) -> tuple[list[np.ndarray] | tuple[list[np.ndarray], | |
list[list[np.ndarray]]] | |
| dict[str, np.ndarray], np.ndarray]: | |
out = self.detect(image) | |
vis = self.visualize_detection_results(image, out, score_threshold) | |
return out, vis | |
def detect( | |
self, image: np.ndarray | |
) -> list[np.ndarray] | tuple[ | |
list[np.ndarray], list[list[np.ndarray]]] | dict[str, np.ndarray]: | |
image = image[:, :, ::-1] # RGB -> BGR | |
out = inference_detector(self.model, image) | |
return out | |
def visualize_detection_results( | |
self, | |
image: np.ndarray, | |
detection_results: list[np.ndarray] | |
| tuple[list[np.ndarray], list[list[np.ndarray]]] | |
| dict[str, np.ndarray], | |
score_threshold: float = 0.3) -> np.ndarray: | |
image = image[:, :, ::-1] # RGB -> BGR | |
vis = self.model.show_result(image, | |
detection_results, | |
score_thr=score_threshold, | |
bbox_color=None, | |
text_color=(200, 200, 200), | |
mask_color=None) | |
return vis[:, :, ::-1] # BGR -> RGB | |
class AppModel(Model): | |
def run( | |
self, model_name: str, image: np.ndarray, score_threshold: float | |
) -> tuple[list[np.ndarray] | tuple[list[np.ndarray], | |
list[list[np.ndarray]]] | |
| dict[str, np.ndarray], np.ndarray]: | |
self.set_model(model_name) | |
return self.detect_and_visualize(image, score_threshold) | |
def model_list(self) -> list[str]: | |
return list(MODEL_DICT.keys()) | |