Remove rgb2x
Browse files- rgb2x/example/Castlereagh_corridor_photo.png +0 -3
- rgb2x/gradio_demo_rgb2x.py +0 -166
- rgb2x/load_image.py +0 -119
- rgb2x/pipeline_rgb2x.py +0 -821
rgb2x/example/Castlereagh_corridor_photo.png
DELETED
Git LFS Details
|
rgb2x/gradio_demo_rgb2x.py
DELETED
@@ -1,166 +0,0 @@
|
|
1 |
-
import spaces
|
2 |
-
import os
|
3 |
-
from typing import cast
|
4 |
-
import gradio as gr
|
5 |
-
from PIL import Image
|
6 |
-
import torch
|
7 |
-
import torchvision
|
8 |
-
from diffusers import DDIMScheduler
|
9 |
-
from load_image import load_exr_image, load_ldr_image
|
10 |
-
from pipeline_rgb2x import StableDiffusionAOVMatEstPipeline
|
11 |
-
|
12 |
-
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
|
13 |
-
|
14 |
-
current_directory = os.path.dirname(os.path.abspath(__file__))
|
15 |
-
|
16 |
-
_pipe = StableDiffusionAOVMatEstPipeline.from_pretrained(
|
17 |
-
"zheng95z/rgb-to-x",
|
18 |
-
torch_dtype=torch.float16,
|
19 |
-
cache_dir=os.path.join(current_directory, "model_cache"),
|
20 |
-
).to("cuda")
|
21 |
-
pipe = cast(StableDiffusionAOVMatEstPipeline, _pipe)
|
22 |
-
pipe.scheduler = DDIMScheduler.from_config(
|
23 |
-
pipe.scheduler.config, rescale_betas_zero_snr=True, timestep_spacing="trailing"
|
24 |
-
)
|
25 |
-
pipe.set_progress_bar_config(disable=True)
|
26 |
-
pipe.to("cuda")
|
27 |
-
pipe = cast(StableDiffusionAOVMatEstPipeline, pipe)
|
28 |
-
|
29 |
-
|
30 |
-
@spaces.GPU
|
31 |
-
def generate(
|
32 |
-
photo,
|
33 |
-
seed: int,
|
34 |
-
inference_step: int,
|
35 |
-
num_samples: int,
|
36 |
-
) -> list[Image.Image]:
|
37 |
-
generator = torch.Generator(device="cuda").manual_seed(seed)
|
38 |
-
|
39 |
-
if photo.name.endswith(".exr"):
|
40 |
-
photo = load_exr_image(photo.name, tonemaping=True, clamp=True).to("cuda")
|
41 |
-
elif (
|
42 |
-
photo.name.endswith(".png")
|
43 |
-
or photo.name.endswith(".jpg")
|
44 |
-
or photo.name.endswith(".jpeg")
|
45 |
-
):
|
46 |
-
photo = load_ldr_image(photo.name, from_srgb=True).to("cuda")
|
47 |
-
|
48 |
-
# Check if the width and height are multiples of 8. If not, crop it using torchvision.transforms.CenterCrop
|
49 |
-
old_height = photo.shape[1]
|
50 |
-
old_width = photo.shape[2]
|
51 |
-
new_height = old_height
|
52 |
-
new_width = old_width
|
53 |
-
radio = old_height / old_width
|
54 |
-
max_side = 1000
|
55 |
-
if old_height > old_width:
|
56 |
-
new_height = max_side
|
57 |
-
new_width = int(new_height / radio)
|
58 |
-
else:
|
59 |
-
new_width = max_side
|
60 |
-
new_height = int(new_width * radio)
|
61 |
-
|
62 |
-
if new_width % 8 != 0 or new_height % 8 != 0:
|
63 |
-
new_width = new_width // 8 * 8
|
64 |
-
new_height = new_height // 8 * 8
|
65 |
-
|
66 |
-
photo = torchvision.transforms.Resize((new_height, new_width))(photo)
|
67 |
-
|
68 |
-
required_aovs = ["albedo", "normal", "roughness", "metallic", "irradiance"]
|
69 |
-
prompts = {
|
70 |
-
"albedo": "Albedo (diffuse basecolor)",
|
71 |
-
"normal": "Camera-space Normal",
|
72 |
-
"roughness": "Roughness",
|
73 |
-
"metallic": "Metallicness",
|
74 |
-
"irradiance": "Irradiance (diffuse lighting)",
|
75 |
-
}
|
76 |
-
|
77 |
-
return_list = []
|
78 |
-
for i in range(num_samples):
|
79 |
-
for aov_name in required_aovs:
|
80 |
-
prompt = prompts[aov_name]
|
81 |
-
generated_image = pipe(
|
82 |
-
prompt=prompt,
|
83 |
-
photo=photo,
|
84 |
-
num_inference_steps=inference_step,
|
85 |
-
height=new_height,
|
86 |
-
width=new_width,
|
87 |
-
generator=generator,
|
88 |
-
required_aovs=[aov_name],
|
89 |
-
).images[0][0] # type: ignore
|
90 |
-
|
91 |
-
generated_image = torchvision.transforms.Resize((old_height, old_width))(
|
92 |
-
generated_image
|
93 |
-
)
|
94 |
-
|
95 |
-
generated_image = (generated_image, f"Generated {aov_name} {i}")
|
96 |
-
return_list.append(generated_image)
|
97 |
-
|
98 |
-
return return_list
|
99 |
-
|
100 |
-
|
101 |
-
with gr.Blocks() as demo:
|
102 |
-
with gr.Row():
|
103 |
-
gr.Markdown("## Model RGB -> X (Realistic image -> Intrinsic channels)")
|
104 |
-
with gr.Row():
|
105 |
-
# Input side
|
106 |
-
with gr.Column():
|
107 |
-
gr.Markdown("### Given Image")
|
108 |
-
photo = gr.File(label="Photo", file_types=[".exr", ".png", ".jpg"])
|
109 |
-
|
110 |
-
gr.Markdown("### Parameters")
|
111 |
-
run_button = gr.Button(value="Run")
|
112 |
-
with gr.Accordion("Advanced options", open=False):
|
113 |
-
seed = gr.Slider(
|
114 |
-
label="Seed",
|
115 |
-
minimum=-1,
|
116 |
-
maximum=2147483647,
|
117 |
-
step=1,
|
118 |
-
randomize=True,
|
119 |
-
)
|
120 |
-
inference_step = gr.Slider(
|
121 |
-
label="Inference Step",
|
122 |
-
minimum=1,
|
123 |
-
maximum=100,
|
124 |
-
step=1,
|
125 |
-
value=50,
|
126 |
-
)
|
127 |
-
num_samples = gr.Slider(
|
128 |
-
label="Samples",
|
129 |
-
minimum=1,
|
130 |
-
maximum=100,
|
131 |
-
step=1,
|
132 |
-
value=1,
|
133 |
-
)
|
134 |
-
|
135 |
-
# Output side
|
136 |
-
with gr.Column():
|
137 |
-
gr.Markdown("### Output Gallery")
|
138 |
-
result_gallery = gr.Gallery(
|
139 |
-
label="Output",
|
140 |
-
show_label=False,
|
141 |
-
elem_id="gallery",
|
142 |
-
columns=2,
|
143 |
-
)
|
144 |
-
examples = gr.Examples(
|
145 |
-
examples=[
|
146 |
-
[
|
147 |
-
"rgb2x/example/Castlereagh_corridor_photo.png",
|
148 |
-
]
|
149 |
-
],
|
150 |
-
inputs=[photo],
|
151 |
-
outputs=[result_gallery],
|
152 |
-
fn=generate,
|
153 |
-
cache_mode="eager",
|
154 |
-
cache_examples=True,
|
155 |
-
)
|
156 |
-
|
157 |
-
run_button.click(
|
158 |
-
fn=generate,
|
159 |
-
inputs=[photo, seed, inference_step, num_samples],
|
160 |
-
outputs=result_gallery,
|
161 |
-
queue=True,
|
162 |
-
)
|
163 |
-
|
164 |
-
|
165 |
-
if __name__ == "__main__":
|
166 |
-
demo.launch(debug=False, share=False, show_api=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rgb2x/load_image.py
DELETED
@@ -1,119 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
-
import cv2
|
4 |
-
import torch
|
5 |
-
|
6 |
-
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
|
7 |
-
import numpy as np
|
8 |
-
|
9 |
-
|
10 |
-
def convert_rgb_2_XYZ(rgb):
|
11 |
-
# Reference: https://web.archive.org/web/20191027010220/http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html
|
12 |
-
# rgb: (h, w, 3)
|
13 |
-
# XYZ: (h, w, 3)
|
14 |
-
XYZ = torch.ones_like(rgb)
|
15 |
-
XYZ[:, :, 0] = (
|
16 |
-
0.4124564 * rgb[:, :, 0] + 0.3575761 * rgb[:, :, 1] + 0.1804375 * rgb[:, :, 2]
|
17 |
-
)
|
18 |
-
XYZ[:, :, 1] = (
|
19 |
-
0.2126729 * rgb[:, :, 0] + 0.7151522 * rgb[:, :, 1] + 0.0721750 * rgb[:, :, 2]
|
20 |
-
)
|
21 |
-
XYZ[:, :, 2] = (
|
22 |
-
0.0193339 * rgb[:, :, 0] + 0.1191920 * rgb[:, :, 1] + 0.9503041 * rgb[:, :, 2]
|
23 |
-
)
|
24 |
-
return XYZ
|
25 |
-
|
26 |
-
|
27 |
-
def convert_XYZ_2_Yxy(XYZ):
|
28 |
-
# XYZ: (h, w, 3)
|
29 |
-
# Yxy: (h, w, 3)
|
30 |
-
Yxy = torch.ones_like(XYZ)
|
31 |
-
Yxy[:, :, 0] = XYZ[:, :, 1]
|
32 |
-
sum = torch.sum(XYZ, dim=2)
|
33 |
-
inv_sum = 1.0 / torch.clamp(sum, min=1e-4)
|
34 |
-
Yxy[:, :, 1] = XYZ[:, :, 0] * inv_sum
|
35 |
-
Yxy[:, :, 2] = XYZ[:, :, 1] * inv_sum
|
36 |
-
return Yxy
|
37 |
-
|
38 |
-
|
39 |
-
def convert_rgb_2_Yxy(rgb):
|
40 |
-
# rgb: (h, w, 3)
|
41 |
-
# Yxy: (h, w, 3)
|
42 |
-
return convert_XYZ_2_Yxy(convert_rgb_2_XYZ(rgb))
|
43 |
-
|
44 |
-
|
45 |
-
def convert_XYZ_2_rgb(XYZ):
|
46 |
-
# XYZ: (h, w, 3)
|
47 |
-
# rgb: (h, w, 3)
|
48 |
-
rgb = torch.ones_like(XYZ)
|
49 |
-
rgb[:, :, 0] = (
|
50 |
-
3.2404542 * XYZ[:, :, 0] - 1.5371385 * XYZ[:, :, 1] - 0.4985314 * XYZ[:, :, 2]
|
51 |
-
)
|
52 |
-
rgb[:, :, 1] = (
|
53 |
-
-0.9692660 * XYZ[:, :, 0] + 1.8760108 * XYZ[:, :, 1] + 0.0415560 * XYZ[:, :, 2]
|
54 |
-
)
|
55 |
-
rgb[:, :, 2] = (
|
56 |
-
0.0556434 * XYZ[:, :, 0] - 0.2040259 * XYZ[:, :, 1] + 1.0572252 * XYZ[:, :, 2]
|
57 |
-
)
|
58 |
-
return rgb
|
59 |
-
|
60 |
-
|
61 |
-
def convert_Yxy_2_XYZ(Yxy):
|
62 |
-
# Yxy: (h, w, 3)
|
63 |
-
# XYZ: (h, w, 3)
|
64 |
-
XYZ = torch.ones_like(Yxy)
|
65 |
-
XYZ[:, :, 0] = Yxy[:, :, 1] / torch.clamp(Yxy[:, :, 2], min=1e-6) * Yxy[:, :, 0]
|
66 |
-
XYZ[:, :, 1] = Yxy[:, :, 0]
|
67 |
-
XYZ[:, :, 2] = (
|
68 |
-
(1.0 - Yxy[:, :, 1] - Yxy[:, :, 2])
|
69 |
-
/ torch.clamp(Yxy[:, :, 2], min=1e-4)
|
70 |
-
* Yxy[:, :, 0]
|
71 |
-
)
|
72 |
-
return XYZ
|
73 |
-
|
74 |
-
|
75 |
-
def convert_Yxy_2_rgb(Yxy):
|
76 |
-
# Yxy: (h, w, 3)
|
77 |
-
# rgb: (h, w, 3)
|
78 |
-
return convert_XYZ_2_rgb(convert_Yxy_2_XYZ(Yxy))
|
79 |
-
|
80 |
-
|
81 |
-
def load_ldr_image(image_path, from_srgb=False, clamp=False, normalize=False):
|
82 |
-
# Load png or jpg image
|
83 |
-
image = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
|
84 |
-
image = torch.from_numpy(image.astype(np.float32) / 255.0) # (h, w, c)
|
85 |
-
image[~torch.isfinite(image)] = 0
|
86 |
-
if from_srgb:
|
87 |
-
# Convert from sRGB to linear RGB
|
88 |
-
image = image**2.2
|
89 |
-
if clamp:
|
90 |
-
image = torch.clamp(image, min=0.0, max=1.0)
|
91 |
-
if normalize:
|
92 |
-
# Normalize to [-1, 1]
|
93 |
-
image = image * 2.0 - 1.0
|
94 |
-
image = torch.nn.functional.normalize(image, dim=-1, eps=1e-6)
|
95 |
-
return image.permute(2, 0, 1) # returns (c, h, w)
|
96 |
-
|
97 |
-
|
98 |
-
def load_exr_image(image_path, tonemaping=False, clamp=False, normalize=False):
|
99 |
-
image = cv2.cvtColor(cv2.imread(image_path, -1), cv2.COLOR_BGR2RGB)
|
100 |
-
image = torch.from_numpy(image.astype("float32")) # (h, w, c)
|
101 |
-
image[~torch.isfinite(image)] = 0
|
102 |
-
if tonemaping:
|
103 |
-
# Exposure adjuestment
|
104 |
-
image_Yxy = convert_rgb_2_Yxy(image)
|
105 |
-
lum = (
|
106 |
-
image[:, :, 0:1] * 0.2125
|
107 |
-
+ image[:, :, 1:2] * 0.7154
|
108 |
-
+ image[:, :, 2:3] * 0.0721
|
109 |
-
)
|
110 |
-
lum = torch.log(torch.clamp(lum, min=1e-6))
|
111 |
-
lum_mean = torch.exp(torch.mean(lum))
|
112 |
-
lp = image_Yxy[:, :, 0:1] * 0.18 / torch.clamp(lum_mean, min=1e-6)
|
113 |
-
image_Yxy[:, :, 0:1] = lp
|
114 |
-
image = convert_Yxy_2_rgb(image_Yxy)
|
115 |
-
if clamp:
|
116 |
-
image = torch.clamp(image, min=0.0, max=1.0)
|
117 |
-
if normalize:
|
118 |
-
image = torch.nn.functional.normalize(image, dim=-1, eps=1e-6)
|
119 |
-
return image.permute(2, 0, 1) # returns (c, h, w)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rgb2x/pipeline_rgb2x.py
DELETED
@@ -1,821 +0,0 @@
|
|
1 |
-
import inspect
|
2 |
-
from dataclasses import dataclass
|
3 |
-
from typing import Callable, List, Optional, Union
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
-
import PIL
|
7 |
-
import torch
|
8 |
-
from diffusers.configuration_utils import register_to_config
|
9 |
-
from diffusers.image_processor import VaeImageProcessor
|
10 |
-
from diffusers.loaders import (
|
11 |
-
LoraLoaderMixin,
|
12 |
-
TextualInversionLoaderMixin,
|
13 |
-
)
|
14 |
-
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
15 |
-
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
16 |
-
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import (
|
17 |
-
rescale_noise_cfg,
|
18 |
-
)
|
19 |
-
from diffusers.schedulers import KarrasDiffusionSchedulers
|
20 |
-
from diffusers.utils import (
|
21 |
-
CONFIG_NAME,
|
22 |
-
BaseOutput,
|
23 |
-
deprecate,
|
24 |
-
logging,
|
25 |
-
)
|
26 |
-
from diffusers.utils.torch_utils import randn_tensor
|
27 |
-
from transformers import CLIPTextModel, CLIPTokenizer
|
28 |
-
|
29 |
-
logger = logging.get_logger(__name__)
|
30 |
-
|
31 |
-
|
32 |
-
class VaeImageProcrssorAOV(VaeImageProcessor):
|
33 |
-
"""
|
34 |
-
Image processor for VAE AOV.
|
35 |
-
|
36 |
-
Args:
|
37 |
-
do_resize (`bool`, *optional*, defaults to `True`):
|
38 |
-
Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`.
|
39 |
-
vae_scale_factor (`int`, *optional*, defaults to `8`):
|
40 |
-
VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
|
41 |
-
resample (`str`, *optional*, defaults to `lanczos`):
|
42 |
-
Resampling filter to use when resizing the image.
|
43 |
-
do_normalize (`bool`, *optional*, defaults to `True`):
|
44 |
-
Whether to normalize the image to [-1,1].
|
45 |
-
"""
|
46 |
-
|
47 |
-
config_name = CONFIG_NAME
|
48 |
-
|
49 |
-
@register_to_config
|
50 |
-
def __init__(
|
51 |
-
self,
|
52 |
-
do_resize: bool = True,
|
53 |
-
vae_scale_factor: int = 8,
|
54 |
-
resample: str = "lanczos",
|
55 |
-
do_normalize: bool = True,
|
56 |
-
):
|
57 |
-
super().__init__()
|
58 |
-
|
59 |
-
def postprocess(
|
60 |
-
self,
|
61 |
-
image: torch.FloatTensor,
|
62 |
-
output_type: str = "pil",
|
63 |
-
do_denormalize: Optional[List[bool]] = None,
|
64 |
-
do_gamma_correction: bool = True,
|
65 |
-
):
|
66 |
-
if not isinstance(image, torch.Tensor):
|
67 |
-
raise ValueError(
|
68 |
-
f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
|
69 |
-
)
|
70 |
-
if output_type not in ["latent", "pt", "np", "pil"]:
|
71 |
-
deprecation_message = (
|
72 |
-
f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
|
73 |
-
"`pil`, `np`, `pt`, `latent`"
|
74 |
-
)
|
75 |
-
deprecate(
|
76 |
-
"Unsupported output_type",
|
77 |
-
"1.0.0",
|
78 |
-
deprecation_message,
|
79 |
-
standard_warn=False,
|
80 |
-
)
|
81 |
-
output_type = "np"
|
82 |
-
|
83 |
-
if output_type == "latent":
|
84 |
-
return image
|
85 |
-
|
86 |
-
if do_denormalize is None:
|
87 |
-
do_denormalize = [self.config.do_normalize] * image.shape[0]
|
88 |
-
|
89 |
-
image = torch.stack(
|
90 |
-
[
|
91 |
-
self.denormalize(image[i]) if do_denormalize[i] else image[i]
|
92 |
-
for i in range(image.shape[0])
|
93 |
-
]
|
94 |
-
)
|
95 |
-
|
96 |
-
# Gamma correction
|
97 |
-
if do_gamma_correction:
|
98 |
-
image = torch.pow(image, 1.0 / 2.2)
|
99 |
-
|
100 |
-
if output_type == "pt":
|
101 |
-
return image
|
102 |
-
|
103 |
-
image = self.pt_to_numpy(image)
|
104 |
-
|
105 |
-
if output_type == "np":
|
106 |
-
return image
|
107 |
-
|
108 |
-
if output_type == "pil":
|
109 |
-
return self.numpy_to_pil(image)
|
110 |
-
|
111 |
-
def preprocess_normal(
|
112 |
-
self,
|
113 |
-
image: Union[torch.FloatTensor, PIL.Image.Image, np.ndarray],
|
114 |
-
height: Optional[int] = None,
|
115 |
-
width: Optional[int] = None,
|
116 |
-
) -> torch.Tensor:
|
117 |
-
image = torch.stack([image], axis=0)
|
118 |
-
return image
|
119 |
-
|
120 |
-
|
121 |
-
@dataclass
|
122 |
-
class StableDiffusionAOVPipelineOutput(BaseOutput):
|
123 |
-
"""
|
124 |
-
Output class for Stable Diffusion AOV pipelines.
|
125 |
-
|
126 |
-
Args:
|
127 |
-
images (`List[PIL.Image.Image]` or `np.ndarray`)
|
128 |
-
List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
|
129 |
-
num_channels)`.
|
130 |
-
nsfw_content_detected (`List[bool]`)
|
131 |
-
List indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content or
|
132 |
-
`None` if safety checking could not be performed.
|
133 |
-
"""
|
134 |
-
|
135 |
-
images: Union[List[PIL.Image.Image], np.ndarray]
|
136 |
-
|
137 |
-
|
138 |
-
class StableDiffusionAOVMatEstPipeline(
|
139 |
-
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin
|
140 |
-
):
|
141 |
-
r"""
|
142 |
-
Pipeline for AOVs.
|
143 |
-
|
144 |
-
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
145 |
-
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
146 |
-
|
147 |
-
The pipeline also inherits the following loading methods:
|
148 |
-
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
149 |
-
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
150 |
-
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
151 |
-
|
152 |
-
Args:
|
153 |
-
vae ([`AutoencoderKL`]):
|
154 |
-
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
155 |
-
text_encoder ([`~transformers.CLIPTextModel`]):
|
156 |
-
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
157 |
-
tokenizer ([`~transformers.CLIPTokenizer`]):
|
158 |
-
A `CLIPTokenizer` to tokenize text.
|
159 |
-
unet ([`UNet2DConditionModel`]):
|
160 |
-
A `UNet2DConditionModel` to denoise the encoded image latents.
|
161 |
-
scheduler ([`SchedulerMixin`]):
|
162 |
-
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
163 |
-
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
164 |
-
"""
|
165 |
-
|
166 |
-
def __init__(
|
167 |
-
self,
|
168 |
-
vae: AutoencoderKL,
|
169 |
-
text_encoder: CLIPTextModel,
|
170 |
-
tokenizer: CLIPTokenizer,
|
171 |
-
unet: UNet2DConditionModel,
|
172 |
-
scheduler: KarrasDiffusionSchedulers,
|
173 |
-
):
|
174 |
-
super().__init__()
|
175 |
-
|
176 |
-
self.register_modules(
|
177 |
-
vae=vae,
|
178 |
-
text_encoder=text_encoder,
|
179 |
-
tokenizer=tokenizer,
|
180 |
-
unet=unet,
|
181 |
-
scheduler=scheduler,
|
182 |
-
)
|
183 |
-
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
184 |
-
self.image_processor = VaeImageProcrssorAOV(
|
185 |
-
vae_scale_factor=self.vae_scale_factor
|
186 |
-
)
|
187 |
-
self.register_to_config()
|
188 |
-
|
189 |
-
def _encode_prompt(
|
190 |
-
self,
|
191 |
-
prompt,
|
192 |
-
device,
|
193 |
-
num_images_per_prompt,
|
194 |
-
do_classifier_free_guidance,
|
195 |
-
negative_prompt=None,
|
196 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
197 |
-
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
198 |
-
):
|
199 |
-
r"""
|
200 |
-
Encodes the prompt into text encoder hidden states.
|
201 |
-
|
202 |
-
Args:
|
203 |
-
prompt (`str` or `List[str]`, *optional*):
|
204 |
-
prompt to be encoded
|
205 |
-
device: (`torch.device`):
|
206 |
-
torch device
|
207 |
-
num_images_per_prompt (`int`):
|
208 |
-
number of images that should be generated per prompt
|
209 |
-
do_classifier_free_guidance (`bool`):
|
210 |
-
whether to use classifier free guidance or not
|
211 |
-
negative_ prompt (`str` or `List[str]`, *optional*):
|
212 |
-
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
213 |
-
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
214 |
-
less than `1`).
|
215 |
-
prompt_embeds (`torch.FloatTensor`, *optional*):
|
216 |
-
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
217 |
-
provided, text embeddings will be generated from `prompt` input argument.
|
218 |
-
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
219 |
-
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
220 |
-
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
221 |
-
argument.
|
222 |
-
"""
|
223 |
-
if prompt is not None and isinstance(prompt, str):
|
224 |
-
batch_size = 1
|
225 |
-
elif prompt is not None and isinstance(prompt, list):
|
226 |
-
batch_size = len(prompt)
|
227 |
-
else:
|
228 |
-
batch_size = prompt_embeds.shape[0]
|
229 |
-
|
230 |
-
if prompt_embeds is None:
|
231 |
-
# textual inversion: procecss multi-vector tokens if necessary
|
232 |
-
if isinstance(self, TextualInversionLoaderMixin):
|
233 |
-
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
234 |
-
|
235 |
-
text_inputs = self.tokenizer(
|
236 |
-
prompt,
|
237 |
-
padding="max_length",
|
238 |
-
max_length=self.tokenizer.model_max_length,
|
239 |
-
truncation=True,
|
240 |
-
return_tensors="pt",
|
241 |
-
)
|
242 |
-
text_input_ids = text_inputs.input_ids
|
243 |
-
untruncated_ids = self.tokenizer(
|
244 |
-
prompt, padding="longest", return_tensors="pt"
|
245 |
-
).input_ids
|
246 |
-
|
247 |
-
if untruncated_ids.shape[-1] >= text_input_ids.shape[
|
248 |
-
-1
|
249 |
-
] and not torch.equal(text_input_ids, untruncated_ids):
|
250 |
-
removed_text = self.tokenizer.batch_decode(
|
251 |
-
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
252 |
-
)
|
253 |
-
logger.warning(
|
254 |
-
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
255 |
-
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
256 |
-
)
|
257 |
-
|
258 |
-
if (
|
259 |
-
hasattr(self.text_encoder.config, "use_attention_mask")
|
260 |
-
and self.text_encoder.config.use_attention_mask
|
261 |
-
):
|
262 |
-
attention_mask = text_inputs.attention_mask.to(device)
|
263 |
-
else:
|
264 |
-
attention_mask = None
|
265 |
-
|
266 |
-
prompt_embeds = self.text_encoder(
|
267 |
-
text_input_ids.to(device),
|
268 |
-
attention_mask=attention_mask,
|
269 |
-
)
|
270 |
-
prompt_embeds = prompt_embeds[0]
|
271 |
-
|
272 |
-
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
273 |
-
|
274 |
-
bs_embed, seq_len, _ = prompt_embeds.shape
|
275 |
-
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
276 |
-
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
277 |
-
prompt_embeds = prompt_embeds.view(
|
278 |
-
bs_embed * num_images_per_prompt, seq_len, -1
|
279 |
-
)
|
280 |
-
|
281 |
-
# get unconditional embeddings for classifier free guidance
|
282 |
-
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
283 |
-
uncond_tokens: List[str]
|
284 |
-
if negative_prompt is None:
|
285 |
-
uncond_tokens = [""] * batch_size
|
286 |
-
elif type(prompt) is not type(negative_prompt):
|
287 |
-
raise TypeError(
|
288 |
-
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
289 |
-
f" {type(prompt)}."
|
290 |
-
)
|
291 |
-
elif isinstance(negative_prompt, str):
|
292 |
-
uncond_tokens = [negative_prompt]
|
293 |
-
elif batch_size != len(negative_prompt):
|
294 |
-
raise ValueError(
|
295 |
-
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
296 |
-
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
297 |
-
" the batch size of `prompt`."
|
298 |
-
)
|
299 |
-
else:
|
300 |
-
uncond_tokens = negative_prompt
|
301 |
-
|
302 |
-
# textual inversion: procecss multi-vector tokens if necessary
|
303 |
-
if isinstance(self, TextualInversionLoaderMixin):
|
304 |
-
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
305 |
-
|
306 |
-
max_length = prompt_embeds.shape[1]
|
307 |
-
uncond_input = self.tokenizer(
|
308 |
-
uncond_tokens,
|
309 |
-
padding="max_length",
|
310 |
-
max_length=max_length,
|
311 |
-
truncation=True,
|
312 |
-
return_tensors="pt",
|
313 |
-
)
|
314 |
-
|
315 |
-
if (
|
316 |
-
hasattr(self.text_encoder.config, "use_attention_mask")
|
317 |
-
and self.text_encoder.config.use_attention_mask
|
318 |
-
):
|
319 |
-
attention_mask = uncond_input.attention_mask.to(device)
|
320 |
-
else:
|
321 |
-
attention_mask = None
|
322 |
-
|
323 |
-
negative_prompt_embeds = self.text_encoder(
|
324 |
-
uncond_input.input_ids.to(device),
|
325 |
-
attention_mask=attention_mask,
|
326 |
-
)
|
327 |
-
negative_prompt_embeds = negative_prompt_embeds[0]
|
328 |
-
|
329 |
-
if do_classifier_free_guidance:
|
330 |
-
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
331 |
-
seq_len = negative_prompt_embeds.shape[1]
|
332 |
-
|
333 |
-
negative_prompt_embeds = negative_prompt_embeds.to(
|
334 |
-
dtype=self.text_encoder.dtype, device=device
|
335 |
-
)
|
336 |
-
|
337 |
-
negative_prompt_embeds = negative_prompt_embeds.repeat(
|
338 |
-
1, num_images_per_prompt, 1
|
339 |
-
)
|
340 |
-
negative_prompt_embeds = negative_prompt_embeds.view(
|
341 |
-
batch_size * num_images_per_prompt, seq_len, -1
|
342 |
-
)
|
343 |
-
|
344 |
-
# For classifier free guidance, we need to do two forward passes.
|
345 |
-
# Here we concatenate the unconditional and text embeddings into a single batch
|
346 |
-
# to avoid doing two forward passes
|
347 |
-
# pix2pix has two negative embeddings, and unlike in other pipelines latents are ordered [prompt_embeds, negative_prompt_embeds, negative_prompt_embeds]
|
348 |
-
prompt_embeds = torch.cat(
|
349 |
-
[prompt_embeds, negative_prompt_embeds, negative_prompt_embeds]
|
350 |
-
)
|
351 |
-
|
352 |
-
return prompt_embeds
|
353 |
-
|
354 |
-
def prepare_extra_step_kwargs(self, generator, eta):
|
355 |
-
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
356 |
-
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
357 |
-
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
358 |
-
# and should be between [0, 1]
|
359 |
-
|
360 |
-
accepts_eta = "eta" in set(
|
361 |
-
inspect.signature(self.scheduler.step).parameters.keys()
|
362 |
-
)
|
363 |
-
extra_step_kwargs = {}
|
364 |
-
if accepts_eta:
|
365 |
-
extra_step_kwargs["eta"] = eta
|
366 |
-
|
367 |
-
# check if the scheduler accepts generator
|
368 |
-
accepts_generator = "generator" in set(
|
369 |
-
inspect.signature(self.scheduler.step).parameters.keys()
|
370 |
-
)
|
371 |
-
if accepts_generator:
|
372 |
-
extra_step_kwargs["generator"] = generator
|
373 |
-
return extra_step_kwargs
|
374 |
-
|
375 |
-
def check_inputs(
|
376 |
-
self,
|
377 |
-
prompt,
|
378 |
-
callback_steps,
|
379 |
-
negative_prompt=None,
|
380 |
-
prompt_embeds=None,
|
381 |
-
negative_prompt_embeds=None,
|
382 |
-
):
|
383 |
-
if (callback_steps is None) or (
|
384 |
-
callback_steps is not None
|
385 |
-
and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
386 |
-
):
|
387 |
-
raise ValueError(
|
388 |
-
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
389 |
-
f" {type(callback_steps)}."
|
390 |
-
)
|
391 |
-
|
392 |
-
if prompt is not None and prompt_embeds is not None:
|
393 |
-
raise ValueError(
|
394 |
-
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
395 |
-
" only forward one of the two."
|
396 |
-
)
|
397 |
-
elif prompt is None and prompt_embeds is None:
|
398 |
-
raise ValueError(
|
399 |
-
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
400 |
-
)
|
401 |
-
elif prompt is not None and (
|
402 |
-
not isinstance(prompt, str) and not isinstance(prompt, list)
|
403 |
-
):
|
404 |
-
raise ValueError(
|
405 |
-
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
|
406 |
-
)
|
407 |
-
|
408 |
-
if negative_prompt is not None and negative_prompt_embeds is not None:
|
409 |
-
raise ValueError(
|
410 |
-
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
411 |
-
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
412 |
-
)
|
413 |
-
|
414 |
-
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
415 |
-
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
416 |
-
raise ValueError(
|
417 |
-
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
418 |
-
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
419 |
-
f" {negative_prompt_embeds.shape}."
|
420 |
-
)
|
421 |
-
|
422 |
-
def prepare_latents(
|
423 |
-
self,
|
424 |
-
batch_size,
|
425 |
-
num_channels_latents,
|
426 |
-
height,
|
427 |
-
width,
|
428 |
-
dtype,
|
429 |
-
device,
|
430 |
-
generator,
|
431 |
-
latents=None,
|
432 |
-
):
|
433 |
-
shape = (
|
434 |
-
batch_size,
|
435 |
-
num_channels_latents,
|
436 |
-
height // self.vae_scale_factor,
|
437 |
-
width // self.vae_scale_factor,
|
438 |
-
)
|
439 |
-
if isinstance(generator, list) and len(generator) != batch_size:
|
440 |
-
raise ValueError(
|
441 |
-
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
442 |
-
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
443 |
-
)
|
444 |
-
|
445 |
-
if latents is None:
|
446 |
-
latents = randn_tensor(
|
447 |
-
shape, generator=generator, device=device, dtype=dtype
|
448 |
-
)
|
449 |
-
else:
|
450 |
-
latents = latents.to(device)
|
451 |
-
|
452 |
-
# scale the initial noise by the standard deviation required by the scheduler
|
453 |
-
latents = latents * self.scheduler.init_noise_sigma
|
454 |
-
return latents
|
455 |
-
|
456 |
-
def prepare_image_latents(
|
457 |
-
self,
|
458 |
-
image,
|
459 |
-
batch_size,
|
460 |
-
num_images_per_prompt,
|
461 |
-
dtype,
|
462 |
-
device,
|
463 |
-
do_classifier_free_guidance,
|
464 |
-
generator=None,
|
465 |
-
):
|
466 |
-
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
|
467 |
-
raise ValueError(
|
468 |
-
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
469 |
-
)
|
470 |
-
|
471 |
-
image = image.to(device=device, dtype=dtype)
|
472 |
-
|
473 |
-
batch_size = batch_size * num_images_per_prompt
|
474 |
-
|
475 |
-
if image.shape[1] == 4:
|
476 |
-
image_latents = image
|
477 |
-
else:
|
478 |
-
if isinstance(generator, list) and len(generator) != batch_size:
|
479 |
-
raise ValueError(
|
480 |
-
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
481 |
-
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
482 |
-
)
|
483 |
-
|
484 |
-
if isinstance(generator, list):
|
485 |
-
image_latents = [
|
486 |
-
self.vae.encode(image[i : i + 1]).latent_dist.mode()
|
487 |
-
for i in range(batch_size)
|
488 |
-
]
|
489 |
-
image_latents = torch.cat(image_latents, dim=0)
|
490 |
-
else:
|
491 |
-
image_latents = self.vae.encode(image).latent_dist.mode()
|
492 |
-
|
493 |
-
if (
|
494 |
-
batch_size > image_latents.shape[0]
|
495 |
-
and batch_size % image_latents.shape[0] == 0
|
496 |
-
):
|
497 |
-
# expand image_latents for batch_size
|
498 |
-
deprecation_message = (
|
499 |
-
f"You have passed {batch_size} text prompts (`prompt`), but only {image_latents.shape[0]} initial"
|
500 |
-
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
|
501 |
-
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
|
502 |
-
" your script to pass as many initial images as text prompts to suppress this warning."
|
503 |
-
)
|
504 |
-
deprecate(
|
505 |
-
"len(prompt) != len(image)",
|
506 |
-
"1.0.0",
|
507 |
-
deprecation_message,
|
508 |
-
standard_warn=False,
|
509 |
-
)
|
510 |
-
additional_image_per_prompt = batch_size // image_latents.shape[0]
|
511 |
-
image_latents = torch.cat(
|
512 |
-
[image_latents] * additional_image_per_prompt, dim=0
|
513 |
-
)
|
514 |
-
elif (
|
515 |
-
batch_size > image_latents.shape[0]
|
516 |
-
and batch_size % image_latents.shape[0] != 0
|
517 |
-
):
|
518 |
-
raise ValueError(
|
519 |
-
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
|
520 |
-
)
|
521 |
-
else:
|
522 |
-
image_latents = torch.cat([image_latents], dim=0)
|
523 |
-
|
524 |
-
if do_classifier_free_guidance:
|
525 |
-
uncond_image_latents = torch.zeros_like(image_latents)
|
526 |
-
image_latents = torch.cat(
|
527 |
-
[image_latents, image_latents, uncond_image_latents], dim=0
|
528 |
-
)
|
529 |
-
|
530 |
-
return image_latents
|
531 |
-
|
532 |
-
@torch.no_grad()
|
533 |
-
def __call__(
|
534 |
-
self,
|
535 |
-
prompt: Union[str, List[str]] = None,
|
536 |
-
photo: Union[
|
537 |
-
torch.FloatTensor,
|
538 |
-
PIL.Image.Image,
|
539 |
-
np.ndarray,
|
540 |
-
List[torch.FloatTensor],
|
541 |
-
List[PIL.Image.Image],
|
542 |
-
List[np.ndarray],
|
543 |
-
] = None,
|
544 |
-
height: Optional[int] = None,
|
545 |
-
width: Optional[int] = None,
|
546 |
-
num_inference_steps: int = 100,
|
547 |
-
required_aovs: List[str] = ["albedo"],
|
548 |
-
negative_prompt: Optional[Union[str, List[str]]] = None,
|
549 |
-
num_images_per_prompt: Optional[int] = 1,
|
550 |
-
use_default_scaling_factor: Optional[bool] = False,
|
551 |
-
guidance_scale: float = 0.0,
|
552 |
-
image_guidance_scale: float = 0.0,
|
553 |
-
guidance_rescale: float = 0.0,
|
554 |
-
eta: float = 0.0,
|
555 |
-
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
556 |
-
latents: Optional[torch.FloatTensor] = None,
|
557 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
558 |
-
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
559 |
-
output_type: Optional[str] = "pil",
|
560 |
-
return_dict: bool = True,
|
561 |
-
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
562 |
-
callback_steps: int = 1,
|
563 |
-
):
|
564 |
-
r"""
|
565 |
-
The call function to the pipeline for generation.
|
566 |
-
|
567 |
-
Args:
|
568 |
-
prompt (`str` or `List[str]`, *optional*):
|
569 |
-
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
570 |
-
image (`torch.FloatTensor` `np.ndarray`, `PIL.Image.Image`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
571 |
-
`Image` or tensor representing an image batch to be repainted according to `prompt`. Can also accept
|
572 |
-
image latents as `image`, but if passing latents directly it is not encoded again.
|
573 |
-
num_inference_steps (`int`, *optional*, defaults to 100):
|
574 |
-
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
575 |
-
expense of slower inference.
|
576 |
-
guidance_scale (`float`, *optional*, defaults to 7.5):
|
577 |
-
A higher guidance scale value encourages the model to generate images closely linked to the text
|
578 |
-
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
579 |
-
image_guidance_scale (`float`, *optional*, defaults to 1.5):
|
580 |
-
Push the generated image towards the inital `image`. Image guidance scale is enabled by setting
|
581 |
-
`image_guidance_scale > 1`. Higher image guidance scale encourages generated images that are closely
|
582 |
-
linked to the source `image`, usually at the expense of lower image quality. This pipeline requires a
|
583 |
-
value of at least `1`.
|
584 |
-
negative_prompt (`str` or `List[str]`, *optional*):
|
585 |
-
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
586 |
-
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
587 |
-
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
588 |
-
The number of images to generate per prompt.
|
589 |
-
eta (`float`, *optional*, defaults to 0.0):
|
590 |
-
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
591 |
-
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
592 |
-
generator (`torch.Generator`, *optional*):
|
593 |
-
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
594 |
-
generation deterministic.
|
595 |
-
latents (`torch.FloatTensor`, *optional*):
|
596 |
-
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
597 |
-
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
598 |
-
tensor is generated by sampling using the supplied random `generator`.
|
599 |
-
prompt_embeds (`torch.FloatTensor`, *optional*):
|
600 |
-
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
601 |
-
provided, text embeddings are generated from the `prompt` input argument.
|
602 |
-
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
603 |
-
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
604 |
-
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
605 |
-
output_type (`str`, *optional*, defaults to `"pil"`):
|
606 |
-
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
607 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
608 |
-
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
609 |
-
plain tuple.
|
610 |
-
callback (`Callable`, *optional*):
|
611 |
-
A function that calls every `callback_steps` steps during inference. The function is called with the
|
612 |
-
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
613 |
-
callback_steps (`int`, *optional*, defaults to 1):
|
614 |
-
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
615 |
-
every step.
|
616 |
-
|
617 |
-
Examples:
|
618 |
-
|
619 |
-
```py
|
620 |
-
>>> import PIL
|
621 |
-
>>> import requests
|
622 |
-
>>> import torch
|
623 |
-
>>> from io import BytesIO
|
624 |
-
|
625 |
-
>>> from diffusers import StableDiffusionInstructPix2PixPipeline
|
626 |
-
|
627 |
-
|
628 |
-
>>> def download_image(url):
|
629 |
-
... response = requests.get(url)
|
630 |
-
... return PIL.Image.open(BytesIO(response.content)).convert("RGB")
|
631 |
-
|
632 |
-
|
633 |
-
>>> img_url = "https://huggingface.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png"
|
634 |
-
|
635 |
-
>>> image = download_image(img_url).resize((512, 512))
|
636 |
-
|
637 |
-
>>> pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(
|
638 |
-
... "timbrooks/instruct-pix2pix", torch_dtype=torch.float16
|
639 |
-
... )
|
640 |
-
>>> pipe = pipe.to("cuda")
|
641 |
-
|
642 |
-
>>> prompt = "make the mountains snowy"
|
643 |
-
>>> image = pipe(prompt=prompt, image=image).images[0]
|
644 |
-
```
|
645 |
-
|
646 |
-
Returns:
|
647 |
-
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
648 |
-
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
649 |
-
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
650 |
-
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
651 |
-
"not-safe-for-work" (nsfw) content.
|
652 |
-
"""
|
653 |
-
# 0. Check inputs
|
654 |
-
self.check_inputs(
|
655 |
-
prompt,
|
656 |
-
callback_steps,
|
657 |
-
negative_prompt,
|
658 |
-
prompt_embeds,
|
659 |
-
negative_prompt_embeds,
|
660 |
-
)
|
661 |
-
|
662 |
-
# 1. Define call parameters
|
663 |
-
if prompt is not None and isinstance(prompt, str):
|
664 |
-
batch_size = 1
|
665 |
-
elif prompt is not None and isinstance(prompt, list):
|
666 |
-
batch_size = len(prompt)
|
667 |
-
else:
|
668 |
-
batch_size = prompt_embeds.shape[0]
|
669 |
-
|
670 |
-
device = self._execution_device
|
671 |
-
do_classifier_free_guidance = (
|
672 |
-
guidance_scale > 1.0 and image_guidance_scale >= 1.0
|
673 |
-
)
|
674 |
-
# check if scheduler is in sigmas space
|
675 |
-
scheduler_is_in_sigma_space = hasattr(self.scheduler, "sigmas")
|
676 |
-
|
677 |
-
# 2. Encode input prompt
|
678 |
-
prompt_embeds = self._encode_prompt(
|
679 |
-
prompt,
|
680 |
-
device,
|
681 |
-
num_images_per_prompt,
|
682 |
-
do_classifier_free_guidance,
|
683 |
-
negative_prompt,
|
684 |
-
prompt_embeds=prompt_embeds,
|
685 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
686 |
-
)
|
687 |
-
|
688 |
-
# 3. Preprocess image
|
689 |
-
# Normalize image to [-1,1]
|
690 |
-
preprocessed_photo = self.image_processor.preprocess(photo)
|
691 |
-
|
692 |
-
# 4. set timesteps
|
693 |
-
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
694 |
-
timesteps = self.scheduler.timesteps
|
695 |
-
|
696 |
-
# 5. Prepare Image latents
|
697 |
-
image_latents = self.prepare_image_latents(
|
698 |
-
preprocessed_photo,
|
699 |
-
batch_size,
|
700 |
-
num_images_per_prompt,
|
701 |
-
prompt_embeds.dtype,
|
702 |
-
device,
|
703 |
-
do_classifier_free_guidance,
|
704 |
-
generator,
|
705 |
-
)
|
706 |
-
image_latents = image_latents * self.vae.config.scaling_factor
|
707 |
-
|
708 |
-
height, width = image_latents.shape[-2:]
|
709 |
-
height = height * self.vae_scale_factor
|
710 |
-
width = width * self.vae_scale_factor
|
711 |
-
|
712 |
-
# 6. Prepare latent variables
|
713 |
-
num_channels_latents = self.unet.config.out_channels
|
714 |
-
latents = self.prepare_latents(
|
715 |
-
batch_size * num_images_per_prompt,
|
716 |
-
num_channels_latents,
|
717 |
-
height,
|
718 |
-
width,
|
719 |
-
prompt_embeds.dtype,
|
720 |
-
device,
|
721 |
-
generator,
|
722 |
-
latents,
|
723 |
-
)
|
724 |
-
|
725 |
-
# 7. Check that shapes of latents and image match the UNet channels
|
726 |
-
num_channels_image = image_latents.shape[1]
|
727 |
-
if num_channels_latents + num_channels_image != self.unet.config.in_channels:
|
728 |
-
raise ValueError(
|
729 |
-
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
|
730 |
-
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
|
731 |
-
f" `num_channels_image`: {num_channels_image} "
|
732 |
-
f" = {num_channels_latents+num_channels_image}. Please verify the config of"
|
733 |
-
" `pipeline.unet` or your `image` input."
|
734 |
-
)
|
735 |
-
|
736 |
-
# 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
737 |
-
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
738 |
-
|
739 |
-
# 9. Denoising loop
|
740 |
-
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
741 |
-
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
742 |
-
for i, t in enumerate(timesteps):
|
743 |
-
# Expand the latents if we are doing classifier free guidance.
|
744 |
-
# The latents are expanded 3 times because for pix2pix the guidance\
|
745 |
-
# is applied for both the text and the input image.
|
746 |
-
latent_model_input = (
|
747 |
-
torch.cat([latents] * 3) if do_classifier_free_guidance else latents
|
748 |
-
)
|
749 |
-
|
750 |
-
# concat latents, image_latents in the channel dimension
|
751 |
-
scaled_latent_model_input = self.scheduler.scale_model_input(
|
752 |
-
latent_model_input, t
|
753 |
-
)
|
754 |
-
scaled_latent_model_input = torch.cat(
|
755 |
-
[scaled_latent_model_input, image_latents], dim=1
|
756 |
-
)
|
757 |
-
|
758 |
-
# predict the noise residual
|
759 |
-
noise_pred = self.unet(
|
760 |
-
scaled_latent_model_input,
|
761 |
-
t,
|
762 |
-
encoder_hidden_states=prompt_embeds,
|
763 |
-
return_dict=False,
|
764 |
-
)[0]
|
765 |
-
|
766 |
-
# perform guidance
|
767 |
-
if do_classifier_free_guidance:
|
768 |
-
(
|
769 |
-
noise_pred_text,
|
770 |
-
noise_pred_image,
|
771 |
-
noise_pred_uncond,
|
772 |
-
) = noise_pred.chunk(3)
|
773 |
-
noise_pred = (
|
774 |
-
noise_pred_uncond
|
775 |
-
+ guidance_scale * (noise_pred_text - noise_pred_image)
|
776 |
-
+ image_guidance_scale * (noise_pred_image - noise_pred_uncond)
|
777 |
-
)
|
778 |
-
|
779 |
-
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
780 |
-
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
781 |
-
noise_pred = rescale_noise_cfg(
|
782 |
-
noise_pred, noise_pred_text, guidance_rescale=guidance_rescale
|
783 |
-
)
|
784 |
-
|
785 |
-
# compute the previous noisy sample x_t -> x_t-1
|
786 |
-
latents = self.scheduler.step(
|
787 |
-
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
|
788 |
-
)[0]
|
789 |
-
|
790 |
-
# call the callback, if provided
|
791 |
-
if i == len(timesteps) - 1 or (
|
792 |
-
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
793 |
-
):
|
794 |
-
progress_bar.update()
|
795 |
-
if callback is not None and i % callback_steps == 0:
|
796 |
-
callback(i, t, latents)
|
797 |
-
|
798 |
-
aov_latents = latents / self.vae.config.scaling_factor
|
799 |
-
aov = self.vae.decode(aov_latents, return_dict=False)[0]
|
800 |
-
do_denormalize = [True] * aov.shape[0]
|
801 |
-
aov_name = required_aovs[0]
|
802 |
-
if aov_name == "albedo" or aov_name == "irradiance":
|
803 |
-
do_gamma_correction = True
|
804 |
-
else:
|
805 |
-
do_gamma_correction = False
|
806 |
-
|
807 |
-
if aov_name == "roughness" or aov_name == "metallic":
|
808 |
-
aov = aov[:, 0:1].repeat(1, 3, 1, 1)
|
809 |
-
|
810 |
-
aov = self.image_processor.postprocess(
|
811 |
-
aov,
|
812 |
-
output_type=output_type,
|
813 |
-
do_denormalize=do_denormalize,
|
814 |
-
do_gamma_correction=do_gamma_correction,
|
815 |
-
)
|
816 |
-
aovs = [aov]
|
817 |
-
|
818 |
-
# Offload last model to CPU
|
819 |
-
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
820 |
-
self.final_offload_hook.offload()
|
821 |
-
return StableDiffusionAOVPipelineOutput(images=aovs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|