Spaces:
Runtime error
Runtime error
from typing import Optional | |
import gradio as gr | |
import qrcode | |
import torch | |
from diffusers import ( | |
ControlNetModel, | |
EulerAncestralDiscreteScheduler, | |
StableDiffusionControlNetPipeline, | |
) | |
from gradio.components import Image, Radio, Slider, Textbox, Number | |
from PIL import Image as PilImage | |
from typing_extensions import Literal | |
def main(): | |
device = ( | |
'cuda' if torch.cuda.is_available() | |
else 'mps' if torch.backends.mps.is_available() | |
else 'cpu' | |
) | |
controlnet_tile = ControlNetModel.from_pretrained( | |
"lllyasviel/control_v11f1e_sd15_tile", | |
torch_dtype=torch.float16, | |
use_safetensors=False, | |
cache_dir="./cache" | |
).to(device) | |
controlnet_brightness = ControlNetModel.from_pretrained( | |
"ioclab/control_v1p_sd15_brightness", | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
cache_dir="./cache" | |
).to(device) | |
def make_pipe(hf_repo: str, device: str) -> StableDiffusionControlNetPipeline: | |
pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
hf_repo, | |
controlnet=[controlnet_tile, controlnet_brightness], | |
torch_dtype=torch.float16, | |
cache_dir="./cache", | |
) | |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
# pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
return pipe.to(device) | |
pipes = { | |
"DreamShaper": make_pipe("Lykon/DreamShaper", "cpu"), | |
# "Realistic Vision V1.4": make_pipe("SG161222/Realistic_Vision_V1.4", "cpu"), | |
# "OpenJourney": make_pipe("prompthero/openjourney", "cpu"), | |
# "Anything V3": make_pipe("Linaqruf/anything-v3.0", "cpu"), | |
} | |
def move_pipe(hf_repo: str): | |
for pipe_name, pipe in pipes.items(): | |
if pipe_name != hf_repo: | |
pipe.to("cpu") | |
return pipes[hf_repo].to(device) | |
def predict( | |
model: Literal[ | |
"DreamShaper", | |
# "Realistic Vision V1.4", | |
# "OpenJourney", | |
# "Anything V3" | |
], | |
qrcode_data: str, | |
prompt: str, | |
negative_prompt: Optional[str] = None, | |
num_inference_steps: int = 100, | |
guidance_scale: int = 9, | |
controlnet_conditioning_tile: float = 0.25, | |
controlnet_conditioning_brightness: float = 0.45, | |
seed: int = 1331, | |
) -> PilImage: | |
generator = torch.Generator(device).manual_seed(seed) | |
if model == "DreamShaper": | |
pipe = move_pipe("DreamShaper") | |
# elif model == "Realistic Vision V1.4": | |
# pipe = move_pipe("Realistic Vision V1.4") | |
# elif model == "OpenJourney": | |
# pipe = move_pipe("OpenJourney") | |
# elif model == "Anything V3": | |
# pipe = move_pipe("Anything V3") | |
qr = qrcode.QRCode( | |
error_correction=qrcode.constants.ERROR_CORRECT_H, | |
box_size=11, | |
border=9, | |
) | |
qr.add_data(qrcode_data) | |
qr.make(fit=True) | |
qrcode_image = qr.make_image( | |
fill_color="black", | |
back_color="white" | |
).convert("RGB") | |
qrcode_image = qrcode_image.resize((512, 512), PilImage.LANCZOS) | |
image = pipe( | |
prompt, | |
[qrcode_image, qrcode_image], | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
controlnet_conditioning_scale=[ | |
controlnet_conditioning_tile, | |
controlnet_conditioning_brightness | |
] | |
).images[0] | |
return image | |
ui = gr.Interface( | |
fn=predict, | |
inputs=[ | |
Radio( | |
value="DreamShaper", | |
label="Model", | |
choices=[ | |
"DreamShaper", | |
# "Realistic Vision V1.4", | |
# "OpenJourney", | |
# "Anything V3" | |
], | |
), | |
Textbox( | |
value="https://twitter.com/JulienBlanchon", | |
label="QR Code Data", | |
), | |
Textbox( | |
value="Japanese ramen with chopsticks, egg and steam, ultra detailed 8k", | |
label="Prompt", | |
), | |
Textbox( | |
value="logo, watermark, signature, text, BadDream, UnrealisticDream", | |
label="Negative Prompt", | |
optional=True | |
), | |
Slider( | |
value=100, | |
label="Number of Inference Steps", | |
minimum=10, | |
maximum=400, | |
step=1, | |
), | |
Slider( | |
value=9, | |
label="Guidance Scale", | |
minimum=1, | |
maximum=20, | |
step=1, | |
), | |
Slider( | |
value=0.25, | |
label="Controlnet Conditioning Tile", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
), | |
Slider( | |
value=0.45, | |
label="Controlnet Conditioning Brightness", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
), | |
Number( | |
value=1, | |
label="Seed", | |
precision=0, | |
), | |
], | |
outputs=Image( | |
label="Generated Image", | |
type="pil", | |
), | |
examples=[ | |
[ | |
"DreamShaper", | |
"https://twitter.com/JulienBlanchon", | |
"Japanese ramen with chopsticks, egg and steam, ultra detailed 8k", | |
"logo, watermark, signature, text, BadDream, UnrealisticDream", | |
100, | |
9, | |
0.25, | |
0.45, | |
1, | |
], | |
# [ | |
# "Anything V3", | |
# "https://twitter.com/JulienBlanchon", | |
# "Japanese ramen with chopsticks, egg and steam, ultra detailed 8k", | |
# "logo, watermark, signature, text, BadDream, UnrealisticDream", | |
# 100, | |
# 9, | |
# 0.25, | |
# 0.60, | |
# 1, | |
# ], | |
[ | |
"DreamShaper", | |
"https://twitter.com/JulienBlanchon", | |
"processor, chipset, electricity, black and white board", | |
"logo, watermark, signature, text, BadDream, UnrealisticDream", | |
300, | |
9, | |
0.50, | |
0.30, | |
1, | |
], | |
], | |
cache_examples=True, | |
title="Stable Diffusion QR Code Controlnet", | |
description="Generate QR Code with Stable Diffusion and Controlnet", | |
allow_flagging="never", | |
max_batch_size=1, | |
) | |
ui.queue(concurrency_count=10).launch() | |
if __name__ == "__main__": | |
main() |