|
import argparse |
|
import logging |
|
import sys |
|
from copy import deepcopy |
|
|
|
sys.path.append('./') |
|
logger = logging.getLogger(__name__) |
|
import torch |
|
from models.common import * |
|
from models.experimental import * |
|
from utils.autoanchor import check_anchor_order |
|
from utils.general import make_divisible, check_file, set_logging |
|
from utils.torch_utils import time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, \ |
|
select_device, copy_attr |
|
from utils.loss import SigmoidBin |
|
|
|
try: |
|
import thop |
|
except ImportError: |
|
thop = None |
|
|
|
|
|
class Detect(nn.Module): |
|
stride = None |
|
export = False |
|
end2end = False |
|
include_nms = False |
|
concat = False |
|
|
|
def __init__(self, nc=80, anchors=(), ch=()): |
|
super(Detect, self).__init__() |
|
self.nc = nc |
|
self.no = nc + 5 |
|
self.nl = len(anchors) |
|
self.na = len(anchors[0]) // 2 |
|
self.grid = [torch.zeros(1)] * self.nl |
|
a = torch.tensor(anchors).float().view(self.nl, -1, 2) |
|
self.register_buffer('anchors', a) |
|
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) |
|
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) |
|
|
|
def forward(self, x): |
|
|
|
z = [] |
|
self.training |= self.export |
|
for i in range(self.nl): |
|
x[i] = self.m[i](x[i]) |
|
bs, _, ny, nx = x[i].shape |
|
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() |
|
|
|
if not self.training: |
|
if self.grid[i].shape[2:4] != x[i].shape[2:4]: |
|
self.grid[i] = self._make_grid(nx, ny).to(x[i].device) |
|
y = x[i].sigmoid() |
|
if not torch.onnx.is_in_onnx_export(): |
|
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] |
|
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] |
|
else: |
|
xy, wh, conf = y.split((2, 2, self.nc + 1), 4) |
|
xy = xy * (2. * self.stride[i]) + (self.stride[i] * (self.grid[i] - 0.5)) |
|
wh = wh ** 2 * (4 * self.anchor_grid[i].data) |
|
y = torch.cat((xy, wh, conf), 4) |
|
z.append(y.view(bs, -1, self.no)) |
|
|
|
if self.training: |
|
out = x |
|
elif self.end2end: |
|
out = torch.cat(z, 1) |
|
elif self.include_nms: |
|
z = self.convert(z) |
|
out = (z, ) |
|
elif self.concat: |
|
out = torch.cat(z, 1) |
|
else: |
|
out = (torch.cat(z, 1), x) |
|
|
|
return out |
|
|
|
@staticmethod |
|
def _make_grid(nx=20, ny=20): |
|
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) |
|
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() |
|
|
|
def convert(self, z): |
|
z = torch.cat(z, 1) |
|
box = z[:, :, :4] |
|
conf = z[:, :, 4:5] |
|
score = z[:, :, 5:] |
|
score *= conf |
|
convert_matrix = torch.tensor([[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]], |
|
dtype=torch.float32, |
|
device=z.device) |
|
box @= convert_matrix |
|
return (box, score) |
|
|
|
|
|
class IDetect(nn.Module): |
|
stride = None |
|
export = False |
|
end2end = False |
|
include_nms = False |
|
concat = False |
|
|
|
def __init__(self, nc=80, anchors=(), ch=()): |
|
super(IDetect, self).__init__() |
|
self.nc = nc |
|
self.no = nc + 5 |
|
self.nl = len(anchors) |
|
self.na = len(anchors[0]) // 2 |
|
self.grid = [torch.zeros(1)] * self.nl |
|
a = torch.tensor(anchors).float().view(self.nl, -1, 2) |
|
self.register_buffer('anchors', a) |
|
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) |
|
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) |
|
|
|
self.ia = nn.ModuleList(ImplicitA(x) for x in ch) |
|
self.im = nn.ModuleList(ImplicitM(self.no * self.na) for _ in ch) |
|
|
|
def forward(self, x): |
|
|
|
z = [] |
|
self.training |= self.export |
|
for i in range(self.nl): |
|
x[i] = self.m[i](self.ia[i](x[i])) |
|
x[i] = self.im[i](x[i]) |
|
bs, _, ny, nx = x[i].shape |
|
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() |
|
|
|
if not self.training: |
|
if self.grid[i].shape[2:4] != x[i].shape[2:4]: |
|
self.grid[i] = self._make_grid(nx, ny).to(x[i].device) |
|
|
|
y = x[i].sigmoid() |
|
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] |
|
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] |
|
z.append(y.view(bs, -1, self.no)) |
|
|
|
return x if self.training else (torch.cat(z, 1), x) |
|
|
|
def fuseforward(self, x): |
|
|
|
z = [] |
|
self.training |= self.export |
|
for i in range(self.nl): |
|
x[i] = self.m[i](x[i]) |
|
bs, _, ny, nx = x[i].shape |
|
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() |
|
|
|
if not self.training: |
|
if self.grid[i].shape[2:4] != x[i].shape[2:4]: |
|
self.grid[i] = self._make_grid(nx, ny).to(x[i].device) |
|
|
|
y = x[i].sigmoid() |
|
if not torch.onnx.is_in_onnx_export(): |
|
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] |
|
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] |
|
else: |
|
xy, wh, conf = y.split((2, 2, self.nc + 1), 4) |
|
xy = xy * (2. * self.stride[i]) + (self.stride[i] * (self.grid[i] - 0.5)) |
|
wh = wh ** 2 * (4 * self.anchor_grid[i].data) |
|
y = torch.cat((xy, wh, conf), 4) |
|
z.append(y.view(bs, -1, self.no)) |
|
|
|
if self.training: |
|
out = x |
|
elif self.end2end: |
|
out = torch.cat(z, 1) |
|
elif self.include_nms: |
|
z = self.convert(z) |
|
out = (z, ) |
|
elif self.concat: |
|
out = torch.cat(z, 1) |
|
else: |
|
out = (torch.cat(z, 1), x) |
|
|
|
return out |
|
|
|
def fuse(self): |
|
print("IDetect.fuse") |
|
|
|
for i in range(len(self.m)): |
|
c1,c2,_,_ = self.m[i].weight.shape |
|
c1_,c2_, _,_ = self.ia[i].implicit.shape |
|
self.m[i].bias += torch.matmul(self.m[i].weight.reshape(c1,c2),self.ia[i].implicit.reshape(c2_,c1_)).squeeze(1) |
|
|
|
|
|
for i in range(len(self.m)): |
|
c1,c2, _,_ = self.im[i].implicit.shape |
|
self.m[i].bias *= self.im[i].implicit.reshape(c2) |
|
self.m[i].weight *= self.im[i].implicit.transpose(0,1) |
|
|
|
@staticmethod |
|
def _make_grid(nx=20, ny=20): |
|
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) |
|
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() |
|
|
|
def convert(self, z): |
|
z = torch.cat(z, 1) |
|
box = z[:, :, :4] |
|
conf = z[:, :, 4:5] |
|
score = z[:, :, 5:] |
|
score *= conf |
|
convert_matrix = torch.tensor([[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]], |
|
dtype=torch.float32, |
|
device=z.device) |
|
box @= convert_matrix |
|
return (box, score) |
|
|
|
|
|
class IKeypoint(nn.Module): |
|
stride = None |
|
export = False |
|
|
|
def __init__(self, nc=80, anchors=(), nkpt=17, ch=(), inplace=True, dw_conv_kpt=False): |
|
super(IKeypoint, self).__init__() |
|
self.nc = nc |
|
self.nkpt = nkpt |
|
self.dw_conv_kpt = dw_conv_kpt |
|
self.no_det=(nc + 5) |
|
self.no_kpt = 3*self.nkpt |
|
self.no = self.no_det+self.no_kpt |
|
self.nl = len(anchors) |
|
self.na = len(anchors[0]) // 2 |
|
self.grid = [torch.zeros(1)] * self.nl |
|
self.flip_test = False |
|
a = torch.tensor(anchors).float().view(self.nl, -1, 2) |
|
self.register_buffer('anchors', a) |
|
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) |
|
self.m = nn.ModuleList(nn.Conv2d(x, self.no_det * self.na, 1) for x in ch) |
|
|
|
self.ia = nn.ModuleList(ImplicitA(x) for x in ch) |
|
self.im = nn.ModuleList(ImplicitM(self.no_det * self.na) for _ in ch) |
|
|
|
if self.nkpt is not None: |
|
if self.dw_conv_kpt: |
|
self.m_kpt = nn.ModuleList( |
|
nn.Sequential(DWConv(x, x, k=3), Conv(x,x), |
|
DWConv(x, x, k=3), Conv(x, x), |
|
DWConv(x, x, k=3), Conv(x,x), |
|
DWConv(x, x, k=3), Conv(x, x), |
|
DWConv(x, x, k=3), Conv(x, x), |
|
DWConv(x, x, k=3), nn.Conv2d(x, self.no_kpt * self.na, 1)) for x in ch) |
|
else: |
|
self.m_kpt = nn.ModuleList(nn.Conv2d(x, self.no_kpt * self.na, 1) for x in ch) |
|
|
|
self.inplace = inplace |
|
|
|
def forward(self, x): |
|
|
|
z = [] |
|
self.training |= self.export |
|
for i in range(self.nl): |
|
if self.nkpt is None or self.nkpt==0: |
|
x[i] = self.im[i](self.m[i](self.ia[i](x[i]))) |
|
else : |
|
x[i] = torch.cat((self.im[i](self.m[i](self.ia[i](x[i]))), self.m_kpt[i](x[i])), axis=1) |
|
|
|
bs, _, ny, nx = x[i].shape |
|
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() |
|
x_det = x[i][..., :6] |
|
x_kpt = x[i][..., 6:] |
|
|
|
if not self.training: |
|
if self.grid[i].shape[2:4] != x[i].shape[2:4]: |
|
self.grid[i] = self._make_grid(nx, ny).to(x[i].device) |
|
kpt_grid_x = self.grid[i][..., 0:1] |
|
kpt_grid_y = self.grid[i][..., 1:2] |
|
|
|
if self.nkpt == 0: |
|
y = x[i].sigmoid() |
|
else: |
|
y = x_det.sigmoid() |
|
|
|
if self.inplace: |
|
xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] |
|
wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i].view(1, self.na, 1, 1, 2) |
|
if self.nkpt != 0: |
|
x_kpt[..., 0::3] = (x_kpt[..., ::3] * 2. - 0.5 + kpt_grid_x.repeat(1,1,1,1,17)) * self.stride[i] |
|
x_kpt[..., 1::3] = (x_kpt[..., 1::3] * 2. - 0.5 + kpt_grid_y.repeat(1,1,1,1,17)) * self.stride[i] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x_kpt[..., 2::3] = x_kpt[..., 2::3].sigmoid() |
|
|
|
y = torch.cat((xy, wh, y[..., 4:], x_kpt), dim = -1) |
|
|
|
else: |
|
xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] |
|
wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] |
|
if self.nkpt != 0: |
|
y[..., 6:] = (y[..., 6:] * 2. - 0.5 + self.grid[i].repeat((1,1,1,1,self.nkpt))) * self.stride[i] |
|
y = torch.cat((xy, wh, y[..., 4:]), -1) |
|
|
|
z.append(y.view(bs, -1, self.no)) |
|
|
|
return x if self.training else (torch.cat(z, 1), x) |
|
|
|
@staticmethod |
|
def _make_grid(nx=20, ny=20): |
|
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) |
|
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() |
|
|
|
|
|
class IAuxDetect(nn.Module): |
|
stride = None |
|
export = False |
|
end2end = False |
|
include_nms = False |
|
concat = False |
|
|
|
def __init__(self, nc=80, anchors=(), ch=()): |
|
super(IAuxDetect, self).__init__() |
|
self.nc = nc |
|
self.no = nc + 5 |
|
self.nl = len(anchors) |
|
self.na = len(anchors[0]) // 2 |
|
self.grid = [torch.zeros(1)] * self.nl |
|
a = torch.tensor(anchors).float().view(self.nl, -1, 2) |
|
self.register_buffer('anchors', a) |
|
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) |
|
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch[:self.nl]) |
|
self.m2 = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch[self.nl:]) |
|
|
|
self.ia = nn.ModuleList(ImplicitA(x) for x in ch[:self.nl]) |
|
self.im = nn.ModuleList(ImplicitM(self.no * self.na) for _ in ch[:self.nl]) |
|
|
|
def forward(self, x): |
|
|
|
z = [] |
|
self.training |= self.export |
|
for i in range(self.nl): |
|
x[i] = self.m[i](self.ia[i](x[i])) |
|
x[i] = self.im[i](x[i]) |
|
bs, _, ny, nx = x[i].shape |
|
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() |
|
|
|
x[i+self.nl] = self.m2[i](x[i+self.nl]) |
|
x[i+self.nl] = x[i+self.nl].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() |
|
|
|
if not self.training: |
|
if self.grid[i].shape[2:4] != x[i].shape[2:4]: |
|
self.grid[i] = self._make_grid(nx, ny).to(x[i].device) |
|
|
|
y = x[i].sigmoid() |
|
if not torch.onnx.is_in_onnx_export(): |
|
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] |
|
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] |
|
else: |
|
xy, wh, conf = y.split((2, 2, self.nc + 1), 4) |
|
xy = xy * (2. * self.stride[i]) + (self.stride[i] * (self.grid[i] - 0.5)) |
|
wh = wh ** 2 * (4 * self.anchor_grid[i].data) |
|
y = torch.cat((xy, wh, conf), 4) |
|
z.append(y.view(bs, -1, self.no)) |
|
|
|
return x if self.training else (torch.cat(z, 1), x[:self.nl]) |
|
|
|
def fuseforward(self, x): |
|
|
|
z = [] |
|
self.training |= self.export |
|
for i in range(self.nl): |
|
x[i] = self.m[i](x[i]) |
|
bs, _, ny, nx = x[i].shape |
|
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() |
|
|
|
if not self.training: |
|
if self.grid[i].shape[2:4] != x[i].shape[2:4]: |
|
self.grid[i] = self._make_grid(nx, ny).to(x[i].device) |
|
|
|
y = x[i].sigmoid() |
|
if not torch.onnx.is_in_onnx_export(): |
|
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] |
|
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] |
|
else: |
|
xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] |
|
wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i].data |
|
y = torch.cat((xy, wh, y[..., 4:]), -1) |
|
z.append(y.view(bs, -1, self.no)) |
|
|
|
if self.training: |
|
out = x |
|
elif self.end2end: |
|
out = torch.cat(z, 1) |
|
elif self.include_nms: |
|
z = self.convert(z) |
|
out = (z, ) |
|
elif self.concat: |
|
out = torch.cat(z, 1) |
|
else: |
|
out = (torch.cat(z, 1), x) |
|
|
|
return out |
|
|
|
def fuse(self): |
|
print("IAuxDetect.fuse") |
|
|
|
for i in range(len(self.m)): |
|
c1,c2,_,_ = self.m[i].weight.shape |
|
c1_,c2_, _,_ = self.ia[i].implicit.shape |
|
self.m[i].bias += torch.matmul(self.m[i].weight.reshape(c1,c2),self.ia[i].implicit.reshape(c2_,c1_)).squeeze(1) |
|
|
|
|
|
for i in range(len(self.m)): |
|
c1,c2, _,_ = self.im[i].implicit.shape |
|
self.m[i].bias *= self.im[i].implicit.reshape(c2) |
|
self.m[i].weight *= self.im[i].implicit.transpose(0,1) |
|
|
|
@staticmethod |
|
def _make_grid(nx=20, ny=20): |
|
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) |
|
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() |
|
|
|
def convert(self, z): |
|
z = torch.cat(z, 1) |
|
box = z[:, :, :4] |
|
conf = z[:, :, 4:5] |
|
score = z[:, :, 5:] |
|
score *= conf |
|
convert_matrix = torch.tensor([[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]], |
|
dtype=torch.float32, |
|
device=z.device) |
|
box @= convert_matrix |
|
return (box, score) |
|
|
|
|
|
class IBin(nn.Module): |
|
stride = None |
|
export = False |
|
|
|
def __init__(self, nc=80, anchors=(), ch=(), bin_count=21): |
|
super(IBin, self).__init__() |
|
self.nc = nc |
|
self.bin_count = bin_count |
|
|
|
self.w_bin_sigmoid = SigmoidBin(bin_count=self.bin_count, min=0.0, max=4.0) |
|
self.h_bin_sigmoid = SigmoidBin(bin_count=self.bin_count, min=0.0, max=4.0) |
|
|
|
self.no = nc + 3 + \ |
|
self.w_bin_sigmoid.get_length() + self.h_bin_sigmoid.get_length() |
|
|
|
|
|
self.nl = len(anchors) |
|
self.na = len(anchors[0]) // 2 |
|
self.grid = [torch.zeros(1)] * self.nl |
|
a = torch.tensor(anchors).float().view(self.nl, -1, 2) |
|
self.register_buffer('anchors', a) |
|
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) |
|
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) |
|
|
|
self.ia = nn.ModuleList(ImplicitA(x) for x in ch) |
|
self.im = nn.ModuleList(ImplicitM(self.no * self.na) for _ in ch) |
|
|
|
def forward(self, x): |
|
|
|
|
|
|
|
self.w_bin_sigmoid.use_fw_regression = True |
|
self.h_bin_sigmoid.use_fw_regression = True |
|
|
|
|
|
z = [] |
|
self.training |= self.export |
|
for i in range(self.nl): |
|
x[i] = self.m[i](self.ia[i](x[i])) |
|
x[i] = self.im[i](x[i]) |
|
bs, _, ny, nx = x[i].shape |
|
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() |
|
|
|
if not self.training: |
|
if self.grid[i].shape[2:4] != x[i].shape[2:4]: |
|
self.grid[i] = self._make_grid(nx, ny).to(x[i].device) |
|
|
|
y = x[i].sigmoid() |
|
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] |
|
|
|
|
|
|
|
|
|
|
|
|
|
pw = self.w_bin_sigmoid.forward(y[..., 2:24]) * self.anchor_grid[i][..., 0] |
|
ph = self.h_bin_sigmoid.forward(y[..., 24:46]) * self.anchor_grid[i][..., 1] |
|
|
|
|
|
|
|
y[..., 2] = pw |
|
y[..., 3] = ph |
|
|
|
y = torch.cat((y[..., 0:4], y[..., 46:]), dim=-1) |
|
|
|
z.append(y.view(bs, -1, y.shape[-1])) |
|
|
|
return x if self.training else (torch.cat(z, 1), x) |
|
|
|
@staticmethod |
|
def _make_grid(nx=20, ny=20): |
|
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) |
|
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() |
|
|
|
|
|
class Model(nn.Module): |
|
def __init__(self, cfg='yolor-csp-c.yaml', ch=3, nc=None, anchors=None): |
|
super(Model, self).__init__() |
|
self.traced = False |
|
if isinstance(cfg, dict): |
|
self.yaml = cfg |
|
else: |
|
import yaml |
|
self.yaml_file = Path(cfg).name |
|
with open(cfg) as f: |
|
self.yaml = yaml.load(f, Loader=yaml.SafeLoader) |
|
|
|
|
|
ch = self.yaml['ch'] = self.yaml.get('ch', ch) |
|
if nc and nc != self.yaml['nc']: |
|
logger.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") |
|
self.yaml['nc'] = nc |
|
if anchors: |
|
logger.info(f'Overriding model.yaml anchors with anchors={anchors}') |
|
self.yaml['anchors'] = round(anchors) |
|
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) |
|
self.names = [str(i) for i in range(self.yaml['nc'])] |
|
|
|
|
|
|
|
m = self.model[-1] |
|
if isinstance(m, Detect): |
|
s = 256 |
|
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) |
|
check_anchor_order(m) |
|
m.anchors /= m.stride.view(-1, 1, 1) |
|
self.stride = m.stride |
|
self._initialize_biases() |
|
|
|
if isinstance(m, IDetect): |
|
s = 256 |
|
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) |
|
check_anchor_order(m) |
|
m.anchors /= m.stride.view(-1, 1, 1) |
|
self.stride = m.stride |
|
self._initialize_biases() |
|
|
|
if isinstance(m, IAuxDetect): |
|
s = 256 |
|
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))[:4]]) |
|
|
|
check_anchor_order(m) |
|
m.anchors /= m.stride.view(-1, 1, 1) |
|
self.stride = m.stride |
|
self._initialize_aux_biases() |
|
|
|
if isinstance(m, IBin): |
|
s = 256 |
|
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) |
|
check_anchor_order(m) |
|
m.anchors /= m.stride.view(-1, 1, 1) |
|
self.stride = m.stride |
|
self._initialize_biases_bin() |
|
|
|
if isinstance(m, IKeypoint): |
|
s = 256 |
|
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) |
|
check_anchor_order(m) |
|
m.anchors /= m.stride.view(-1, 1, 1) |
|
self.stride = m.stride |
|
self._initialize_biases_kpt() |
|
|
|
|
|
|
|
initialize_weights(self) |
|
self.info() |
|
logger.info('') |
|
|
|
def forward(self, x, augment=False, profile=False): |
|
if augment: |
|
img_size = x.shape[-2:] |
|
s = [1, 0.83, 0.67] |
|
f = [None, 3, None] |
|
y = [] |
|
for si, fi in zip(s, f): |
|
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max())) |
|
yi = self.forward_once(xi)[0] |
|
|
|
yi[..., :4] /= si |
|
if fi == 2: |
|
yi[..., 1] = img_size[0] - yi[..., 1] |
|
elif fi == 3: |
|
yi[..., 0] = img_size[1] - yi[..., 0] |
|
y.append(yi) |
|
return torch.cat(y, 1), None |
|
else: |
|
return self.forward_once(x, profile) |
|
|
|
def forward_once(self, x, profile=False): |
|
y, dt = [], [] |
|
for m in self.model: |
|
if m.f != -1: |
|
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] |
|
|
|
if not hasattr(self, 'traced'): |
|
self.traced=False |
|
|
|
if self.traced: |
|
if isinstance(m, Detect) or isinstance(m, IDetect) or isinstance(m, IAuxDetect) or isinstance(m, IKeypoint): |
|
break |
|
|
|
if profile: |
|
c = isinstance(m, (Detect, IDetect, IAuxDetect, IBin)) |
|
o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 |
|
for _ in range(10): |
|
m(x.copy() if c else x) |
|
t = time_synchronized() |
|
for _ in range(10): |
|
m(x.copy() if c else x) |
|
dt.append((time_synchronized() - t) * 100) |
|
print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type)) |
|
|
|
x = m(x) |
|
|
|
y.append(x if m.i in self.save else None) |
|
|
|
if profile: |
|
print('%.1fms total' % sum(dt)) |
|
return x |
|
|
|
def _initialize_biases(self, cf=None): |
|
|
|
|
|
m = self.model[-1] |
|
for mi, s in zip(m.m, m.stride): |
|
b = mi.bias.view(m.na, -1) |
|
b.data[:, 4] += math.log(8 / (640 / s) ** 2) |
|
b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) |
|
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) |
|
|
|
def _initialize_aux_biases(self, cf=None): |
|
|
|
|
|
m = self.model[-1] |
|
for mi, mi2, s in zip(m.m, m.m2, m.stride): |
|
b = mi.bias.view(m.na, -1) |
|
b.data[:, 4] += math.log(8 / (640 / s) ** 2) |
|
b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) |
|
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) |
|
b2 = mi2.bias.view(m.na, -1) |
|
b2.data[:, 4] += math.log(8 / (640 / s) ** 2) |
|
b2.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) |
|
mi2.bias = torch.nn.Parameter(b2.view(-1), requires_grad=True) |
|
|
|
def _initialize_biases_bin(self, cf=None): |
|
|
|
|
|
m = self.model[-1] |
|
bc = m.bin_count |
|
for mi, s in zip(m.m, m.stride): |
|
b = mi.bias.view(m.na, -1) |
|
old = b[:, (0,1,2,bc+3)].data |
|
obj_idx = 2*bc+4 |
|
b[:, :obj_idx].data += math.log(0.6 / (bc + 1 - 0.99)) |
|
b[:, obj_idx].data += math.log(8 / (640 / s) ** 2) |
|
b[:, (obj_idx+1):].data += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) |
|
b[:, (0,1,2,bc+3)].data = old |
|
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) |
|
|
|
def _initialize_biases_kpt(self, cf=None): |
|
|
|
|
|
m = self.model[-1] |
|
for mi, s in zip(m.m, m.stride): |
|
b = mi.bias.view(m.na, -1) |
|
b.data[:, 4] += math.log(8 / (640 / s) ** 2) |
|
b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) |
|
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) |
|
|
|
def _print_biases(self): |
|
m = self.model[-1] |
|
for mi in m.m: |
|
b = mi.bias.detach().view(m.na, -1).T |
|
print(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean())) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def fuse(self): |
|
print('Fusing layers... ') |
|
for m in self.model.modules(): |
|
if isinstance(m, RepConv): |
|
|
|
m.fuse_repvgg_block() |
|
elif isinstance(m, RepConv_OREPA): |
|
|
|
m.switch_to_deploy() |
|
elif type(m) is Conv and hasattr(m, 'bn'): |
|
m.conv = fuse_conv_and_bn(m.conv, m.bn) |
|
delattr(m, 'bn') |
|
m.forward = m.fuseforward |
|
elif isinstance(m, (IDetect, IAuxDetect)): |
|
m.fuse() |
|
m.forward = m.fuseforward |
|
self.info() |
|
return self |
|
|
|
def nms(self, mode=True): |
|
present = type(self.model[-1]) is NMS |
|
if mode and not present: |
|
print('Adding NMS... ') |
|
m = NMS() |
|
m.f = -1 |
|
m.i = self.model[-1].i + 1 |
|
self.model.add_module(name='%s' % m.i, module=m) |
|
self.eval() |
|
elif not mode and present: |
|
print('Removing NMS... ') |
|
self.model = self.model[:-1] |
|
return self |
|
|
|
def autoshape(self): |
|
print('Adding autoShape... ') |
|
m = autoShape(self) |
|
copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) |
|
return m |
|
|
|
def info(self, verbose=False, img_size=640): |
|
model_info(self, verbose, img_size) |
|
|
|
|
|
def parse_model(d, ch): |
|
logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments')) |
|
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'] |
|
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors |
|
no = na * (nc + 5) |
|
|
|
layers, save, c2 = [], [], ch[-1] |
|
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): |
|
m = eval(m) if isinstance(m, str) else m |
|
for j, a in enumerate(args): |
|
try: |
|
args[j] = eval(a) if isinstance(a, str) else a |
|
except: |
|
pass |
|
|
|
n = max(round(n * gd), 1) if n > 1 else n |
|
if m in [nn.Conv2d, Conv, RobustConv, RobustConv2, DWConv, GhostConv, RepConv, RepConv_OREPA, DownC, |
|
SPP, SPPF, SPPCSPC, GhostSPPCSPC, MixConv2d, Focus, Stem, GhostStem, CrossConv, |
|
Bottleneck, BottleneckCSPA, BottleneckCSPB, BottleneckCSPC, |
|
RepBottleneck, RepBottleneckCSPA, RepBottleneckCSPB, RepBottleneckCSPC, |
|
Res, ResCSPA, ResCSPB, ResCSPC, |
|
RepRes, RepResCSPA, RepResCSPB, RepResCSPC, |
|
ResX, ResXCSPA, ResXCSPB, ResXCSPC, |
|
RepResX, RepResXCSPA, RepResXCSPB, RepResXCSPC, |
|
Ghost, GhostCSPA, GhostCSPB, GhostCSPC, |
|
SwinTransformerBlock, STCSPA, STCSPB, STCSPC, |
|
SwinTransformer2Block, ST2CSPA, ST2CSPB, ST2CSPC]: |
|
c1, c2 = ch[f], args[0] |
|
if c2 != no: |
|
c2 = make_divisible(c2 * gw, 8) |
|
|
|
args = [c1, c2, *args[1:]] |
|
if m in [DownC, SPPCSPC, GhostSPPCSPC, |
|
BottleneckCSPA, BottleneckCSPB, BottleneckCSPC, |
|
RepBottleneckCSPA, RepBottleneckCSPB, RepBottleneckCSPC, |
|
ResCSPA, ResCSPB, ResCSPC, |
|
RepResCSPA, RepResCSPB, RepResCSPC, |
|
ResXCSPA, ResXCSPB, ResXCSPC, |
|
RepResXCSPA, RepResXCSPB, RepResXCSPC, |
|
GhostCSPA, GhostCSPB, GhostCSPC, |
|
STCSPA, STCSPB, STCSPC, |
|
ST2CSPA, ST2CSPB, ST2CSPC]: |
|
args.insert(2, n) |
|
n = 1 |
|
elif m is nn.BatchNorm2d: |
|
args = [ch[f]] |
|
elif m is Concat: |
|
c2 = sum([ch[x] for x in f]) |
|
elif m is Chuncat: |
|
c2 = sum([ch[x] for x in f]) |
|
elif m is Shortcut: |
|
c2 = ch[f[0]] |
|
elif m is Foldcut: |
|
c2 = ch[f] // 2 |
|
elif m in [Detect, IDetect, IAuxDetect, IBin, IKeypoint]: |
|
args.append([ch[x] for x in f]) |
|
if isinstance(args[1], int): |
|
args[1] = [list(range(args[1] * 2))] * len(f) |
|
elif m is ReOrg: |
|
c2 = ch[f] * 4 |
|
elif m is Contract: |
|
c2 = ch[f] * args[0] ** 2 |
|
elif m is Expand: |
|
c2 = ch[f] // args[0] ** 2 |
|
else: |
|
c2 = ch[f] |
|
|
|
m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) |
|
t = str(m)[8:-2].replace('__main__.', '') |
|
np = sum([x.numel() for x in m_.parameters()]) |
|
m_.i, m_.f, m_.type, m_.np = i, f, t, np |
|
logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) |
|
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) |
|
layers.append(m_) |
|
if i == 0: |
|
ch = [] |
|
ch.append(c2) |
|
return nn.Sequential(*layers), sorted(save) |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--cfg', type=str, default='yolor-csp-c.yaml', help='model.yaml') |
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|
parser.add_argument('--profile', action='store_true', help='profile model speed') |
|
opt = parser.parse_args() |
|
opt.cfg = check_file(opt.cfg) |
|
set_logging() |
|
device = select_device(opt.device) |
|
|
|
|
|
model = Model(opt.cfg).to(device) |
|
model.train() |
|
|
|
if opt.profile: |
|
img = torch.rand(1, 3, 640, 640).to(device) |
|
y = model(img, profile=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|