Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.utils.data | |
| from librosa.filters import mel as librosa_mel_fn | |
| def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): | |
| """ | |
| Dynamic range compression using log10. | |
| Args: | |
| x (torch.Tensor): Input tensor. | |
| C (float, optional): Scaling factor. Defaults to 1. | |
| clip_val (float, optional): Minimum value for clamping. Defaults to 1e-5. | |
| """ | |
| return torch.log(torch.clamp(x, min=clip_val) * C) | |
| def dynamic_range_decompression_torch(x, C=1): | |
| """ | |
| Dynamic range decompression using exp. | |
| Args: | |
| x (torch.Tensor): Input tensor. | |
| C (float, optional): Scaling factor. Defaults to 1. | |
| """ | |
| return torch.exp(x) / C | |
| def spectral_normalize_torch(magnitudes): | |
| """ | |
| Spectral normalization using dynamic range compression. | |
| Args: | |
| magnitudes (torch.Tensor): Magnitude spectrogram. | |
| """ | |
| return dynamic_range_compression_torch(magnitudes) | |
| def spectral_de_normalize_torch(magnitudes): | |
| """ | |
| Spectral de-normalization using dynamic range decompression. | |
| Args: | |
| magnitudes (torch.Tensor): Normalized spectrogram. | |
| """ | |
| return dynamic_range_decompression_torch(magnitudes) | |
| mel_basis = {} | |
| hann_window = {} | |
| def spectrogram_torch(y, n_fft, hop_size, win_size, center=False): | |
| """ | |
| Compute the spectrogram of a signal using STFT. | |
| Args: | |
| y (torch.Tensor): Input signal. | |
| n_fft (int): FFT window size. | |
| hop_size (int): Hop size between frames. | |
| win_size (int): Window size. | |
| center (bool, optional): Whether to center the window. Defaults to False. | |
| """ | |
| global hann_window | |
| dtype_device = str(y.dtype) + "_" + str(y.device) | |
| wnsize_dtype_device = str(win_size) + "_" + dtype_device | |
| if wnsize_dtype_device not in hann_window: | |
| hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to( | |
| dtype=y.dtype, device=y.device | |
| ) | |
| y = torch.nn.functional.pad( | |
| y.unsqueeze(1), | |
| (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), | |
| mode="reflect", | |
| ) | |
| y = y.squeeze(1) | |
| spec = torch.stft( | |
| y, | |
| n_fft=n_fft, | |
| hop_length=hop_size, | |
| win_length=win_size, | |
| window=hann_window[wnsize_dtype_device], | |
| center=center, | |
| pad_mode="reflect", | |
| normalized=False, | |
| onesided=True, | |
| return_complex=True, | |
| ) | |
| spec = torch.sqrt(spec.real.pow(2) + spec.imag.pow(2) + 1e-6) | |
| return spec | |
| def spec_to_mel_torch(spec, n_fft, num_mels, sample_rate, fmin, fmax): | |
| """ | |
| Convert a spectrogram to a mel-spectrogram. | |
| Args: | |
| spec (torch.Tensor): Magnitude spectrogram. | |
| n_fft (int): FFT window size. | |
| num_mels (int): Number of mel frequency bins. | |
| sample_rate (int): Sampling rate of the audio signal. | |
| fmin (float): Minimum frequency. | |
| fmax (float): Maximum frequency. | |
| """ | |
| global mel_basis | |
| dtype_device = str(spec.dtype) + "_" + str(spec.device) | |
| fmax_dtype_device = str(fmax) + "_" + dtype_device | |
| if fmax_dtype_device not in mel_basis: | |
| mel = librosa_mel_fn( | |
| sr=sample_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax | |
| ) | |
| mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to( | |
| dtype=spec.dtype, device=spec.device | |
| ) | |
| melspec = torch.matmul(mel_basis[fmax_dtype_device], spec) | |
| melspec = spectral_normalize_torch(melspec) | |
| return melspec | |
| def mel_spectrogram_torch( | |
| y, n_fft, num_mels, sample_rate, hop_size, win_size, fmin, fmax, center=False | |
| ): | |
| """ | |
| Compute the mel-spectrogram of a signal. | |
| Args: | |
| y (torch.Tensor): Input signal. | |
| n_fft (int): FFT window size. | |
| num_mels (int): Number of mel frequency bins. | |
| sample_rate (int): Sampling rate of the audio signal. | |
| hop_size (int): Hop size between frames. | |
| win_size (int): Window size. | |
| fmin (float): Minimum frequency. | |
| fmax (float): Maximum frequency. | |
| center (bool, optional): Whether to center the window. Defaults to False. | |
| """ | |
| spec = spectrogram_torch(y, n_fft, hop_size, win_size, center) | |
| melspec = spec_to_mel_torch(spec, n_fft, num_mels, sample_rate, fmin, fmax) | |
| return melspec | |
| def compute_window_length(n_mels: int, sample_rate: int): | |
| f_min = 0 | |
| f_max = sample_rate / 2 | |
| window_length_seconds = 8 * n_mels / (f_max - f_min) | |
| window_length = int(window_length_seconds * sample_rate) | |
| return 2 ** (window_length.bit_length() - 1) | |
| class MultiScaleMelSpectrogramLoss(torch.nn.Module): | |
| def __init__( | |
| self, | |
| sample_rate: int = 24000, | |
| n_mels: list[int] = [5, 10, 20, 40, 80, 160, 320], # , 480], | |
| window_lengths: list[int] = [32, 64, 128, 256, 512, 1024, 2048], # , 4096], | |
| loss_fn=torch.nn.L1Loss(), | |
| ): | |
| super().__init__() | |
| self.sample_rate = sample_rate | |
| self.loss_fn = loss_fn | |
| self.log_base = torch.log(torch.tensor(10.0)) | |
| self.stft_params: list[tuple] = [] | |
| self.hann_window: dict[int, torch.Tensor] = {} | |
| self.mel_banks: dict[int, torch.Tensor] = {} | |
| self.stft_params = [(mel, win) for mel, win in zip(n_mels, window_lengths)] | |
| def mel_spectrogram( | |
| self, | |
| wav: torch.Tensor, | |
| n_mels: int, | |
| window_length: int, | |
| ): | |
| # IDs for caching | |
| dtype_device = str(wav.dtype) + "_" + str(wav.device) | |
| win_dtype_device = str(window_length) + "_" + dtype_device | |
| mel_dtype_device = str(n_mels) + "_" + dtype_device | |
| # caching hann window | |
| if win_dtype_device not in self.hann_window: | |
| self.hann_window[win_dtype_device] = torch.hann_window( | |
| window_length, device=wav.device, dtype=torch.float32 | |
| ) | |
| wav = wav.squeeze(1) # -> torch(B, T) | |
| stft = torch.stft( | |
| wav.float(), | |
| n_fft=window_length, | |
| hop_length=window_length // 4, | |
| window=self.hann_window[win_dtype_device], | |
| return_complex=True, | |
| ) # -> torch (B, window_length // 2 + 1, (T - window_length)/hop_length + 1) | |
| magnitude = torch.sqrt(stft.real.pow(2) + stft.imag.pow(2) + 1e-6) | |
| # caching mel filter | |
| if mel_dtype_device not in self.mel_banks: | |
| self.mel_banks[mel_dtype_device] = torch.from_numpy( | |
| librosa_mel_fn( | |
| sr=self.sample_rate, | |
| n_mels=n_mels, | |
| n_fft=window_length, | |
| fmin=0, | |
| fmax=None, | |
| ) | |
| ).to(device=wav.device, dtype=torch.float32) | |
| mel_spectrogram = torch.matmul( | |
| self.mel_banks[mel_dtype_device], magnitude | |
| ) # torch(B, n_mels, stft.frames) | |
| return mel_spectrogram | |
| def forward( | |
| self, real: torch.Tensor, fake: torch.Tensor | |
| ): # real: torch(B, 1, T) , fake: torch(B, 1, T) | |
| loss = 0.0 | |
| for p in self.stft_params: | |
| real_mels = self.mel_spectrogram(real, *p) | |
| fake_mels = self.mel_spectrogram(fake, *p) | |
| real_logmels = torch.log(real_mels.clamp(min=1e-5)) / self.log_base | |
| fake_logmels = torch.log(fake_mels.clamp(min=1e-5)) / self.log_base | |
| loss += self.loss_fn(real_logmels, fake_logmels) | |
| return loss | |