Spaces:
Running
Running
# import streamlit as st | |
# import torch | |
# import transformers | |
# from transformers import pipeline | |
# from transformers import LlamaTokenizer, LlamaForCausalLM | |
# import time | |
# import csv | |
# import locale | |
# locale.getpreferredencoding = lambda: "UTF-8" | |
# - | |
# #https://huggingface.co/shibing624/chinese-alpaca-plus-7b-hf | |
# #https://huggingface.co/ziqingyang/chinese-alpaca-2-7b | |
# #https://huggingface.co/minlik/chinese-alpaca-plus-7b-merged | |
# def generate_prompt(text): | |
# return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. | |
# ### Instruction: | |
# {text} | |
# ### Response:""" | |
# tokenizer = LlamaTokenizer.from_pretrained('shibing624/chinese-alpaca-plus-7b-hf') | |
# pipeline = pipeline( | |
# "text-generation", | |
# model="shibing624/chinese-alpaca-plus-7b-hf", | |
# torch_dtype=torch.float32, | |
# device_map="auto", | |
# ) | |
# st.title("Chinese text generation alpaca2") | |
# st.write("Enter a sentence and alpaca2 will answer:") | |
# user_input = st.text_input("") | |
# with open('alpaca_output.csv', 'a', newline='',encoding = "utf-8") as csvfile: | |
# writer = csv.writer(csvfile) | |
# # writer.writerow(["stockname",'prompt','answer','time']) | |
# if user_input: | |
# if user_input[0] == ".": | |
# stockname = user_input[1:4] | |
# analysis = user_input[4:] | |
# text = f"""請以肯定和專業的語氣,一步一步的思考並回答以下關於{stockname}的問題,避免空洞的答覆: | |
# - 請回答關於{stockname}的問題,請總結給予的資料以及資料解釋,並整合出金融上的洞見。\n | |
# - 請不要生成任何資料沒有提供的數據,即便你已知道。\n | |
# - 請假裝這些資料都是你預先知道的知識。因此,請不要提到「根據資料」、「基於上述資料」等回答 | |
# - 請不要說「好的、我明白了、根據我的要求、以下是我的答案」等贅詞,請輸出分析結果即可\n | |
# - 請寫300字到500字之間,若合適,可以進行分類、列點 | |
# 資料:{stockname}{analysis} | |
# 請特別注意,分析結果包含籌碼面、基本面以及技術面,請針對這三個面向進行回答,並且特別注意個別符合幾項和不符合幾項。籌碼面、技術面和基本面滿分十分,總計滿分為30分。 | |
# 三個面向中,符合5項以上代表該面項表現好,反之是該面項表現差。 | |
# """ | |
# prompt = generate_prompt(text) | |
# start = time.time() | |
# sequences = pipeline( | |
# prompt, | |
# do_sample=True, | |
# top_k=40, | |
# num_return_sequences=1, | |
# eos_token_id=tokenizer.eos_token_id, | |
# max_length=200, | |
# ) | |
# end = time.time() | |
# for seq in sequences: | |
# st.write(f"Result: {seq}") #seq['generated_text'] | |
# st.write(f"time: {(end-start):.2f}") | |
# writer.writerow([stockname,text,sequences,f"time: {(end-start):.2f}"]) | |
# # input_ids = tokenizer.encode(prompt, return_tensors='pt').to('cuda') | |
# # with torch.no_grad(): | |
# # output_ids = model.generate( | |
# # input_ids=input_ids, | |
# # max_new_tokens=2048, | |
# # top_k=40, | |
# # ).cuda() | |
# # output = tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
# else: | |
# prompt = generate_prompt(user_input) | |
# start = time.time() | |
# sequences = pipeline( | |
# prompt, | |
# do_sample=True, | |
# top_k=40, | |
# num_return_sequences=1, | |
# eos_token_id=tokenizer.eos_token_id, | |
# max_length=200, | |
# ) | |
# end = time.time() | |
# for seq in sequences: | |
# st.write(f"Result: {seq}") #seq['generated_text'] | |
# st.write(f"time: {(end-start):.2f}") | |
# writer.writerow(["無",user_input,sequences,f"time: {(end-start):.2f}"]) | |