pdf_rag_chatbot / app.py
holy
module import fix
7e9bcc1
raw
history blame
8.94 kB
import gradio as gr
import os
import time
import pdfplumber
from dotenv import load_dotenv
import torch
from transformers import (
BertJapaneseTokenizer,
BertModel,
AutoTokenizer,
AutoModelForCausalLM,
pipeline,
BitsAndBytesConfig
)
from langchain_community.vectorstores import FAISS # 修正
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain_community.llms import HuggingFacePipeline # 修正
from langchain_community.embeddings import HuggingFaceEmbeddings # 修正
from langchain_huggingface import HuggingFaceEndpoint
# Pydanticの警告を無視
import warnings
warnings.filterwarnings(
"ignore",
message=r"Field \"model_name\" in HuggingFaceInferenceAPIEmbeddings has conflict with protected namespace"
)
load_dotenv()
list_llm = [
"meta-llama/Meta-Llama-3-8B-Instruct",
"rinna/llama-3-youko-8b",
]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
# 日本語PDFのテキスト抽出
def extract_text_from_pdf(file_path):
with pdfplumber.open(file_path) as pdf:
pages = [page.extract_text() for page in pdf.pages]
return " ".join(pages)
# モデルとトークナイザの初期化
tokenizer_bert = BertJapaneseTokenizer.from_pretrained(
'cl-tohoku/bert-base-japanese',
clean_up_tokenization_spaces=True
)
model_bert = BertModel.from_pretrained('cl-tohoku/bert-base-japanese')
def split_text_simple(text, chunk_size=1024):
return [text[i:i + chunk_size] for i in range(0, len(text), chunk_size)]
def create_db(splits):
embeddings = HuggingFaceEmbeddings(
model_name='sonoisa/sentence-bert-base-ja-mean-tokens'
)
vectordb = FAISS.from_texts(splits, embeddings)
return vectordb
def initialize_llmchain(
llm_model,
temperature,
max_tokens,
top_k,
vector_db,
retries=5,
delay=5
):
attempt = 0
while attempt < retries:
try:
# ローカルモデルの場合
if "rinna" in llm_model.lower():
# デバイスの自動検出
if torch.cuda.is_available():
device_map = "auto"
torch_dtype = torch.float16
# GPUがある場合は量子化を使用
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
model = AutoModelForCausalLM.from_pretrained(
llm_model,
device_map=device_map,
quantization_config=quantization_config
)
else:
device_map = {"": "cpu"}
torch_dtype = torch.float32
# CPUの場合は量子化を使用せずにモデルをロード
model = AutoModelForCausalLM.from_pretrained(
llm_model,
device_map=device_map,
torch_dtype=torch_dtype
)
tokenizer = AutoTokenizer.from_pretrained(llm_model, use_fast=False)
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=max_tokens,
temperature=temperature
)
llm = HuggingFacePipeline(pipeline=pipe)
# エンドポイントモデルの場合
elif "meta-llama" in llm_model.lower() or "mistralai" in llm_model.lower():
# パラメータを直接指定
llm = HuggingFaceEndpoint(
endpoint_url=f"https://api-inference.huggingface.co/models/{llm_model}",
huggingfacehub_api_token=os.getenv("HF_TOKEN"),
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k
)
else:
# その他のモデルの場合(必要に応じて追加)
raise Exception(f"Unsupported model: {llm_model}")
# 共通の処理
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
retriever = vector_db.as_retriever()
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
memory=memory,
return_source_documents=True,
verbose=False
)
return qa_chain
except Exception as e:
if "Could not authenticate with huggingface_hub" in str(e):
time.sleep(delay)
attempt += 1
else:
raise Exception(f"Error initializing QA chain: {str(e)}")
raise Exception(f"Failed to initialize after {retries} attempts")
def process_pdf(file):
try:
if file is None:
return None, "Please upload a PDF file."
text = extract_text_from_pdf(file.name)
splits = split_text_simple(text)
vdb = create_db(splits)
return vdb, "PDF processed and vector database created."
except Exception as e:
return None, f"Error processing PDF: {str(e)}"
def initialize_qa_chain(
llm_index,
temperature,
max_tokens,
top_k,
vector_db
):
try:
if vector_db is None:
return None, "Please process a PDF first."
llm_name = list_llm[llm_index]
chain = initialize_llmchain(
llm_name,
temperature,
max_tokens,
top_k,
vector_db
)
return chain, "QA Chatbot initialized with selected LLM."
except Exception as e:
return None, f"Error initializing QA chain: {str(e)}"
def update_chat(msg, history, chain):
try:
if chain is None:
return history + [("User", msg), ("Assistant", "Please initialize the QA Chatbot first.")]
response = chain({"question": msg, "chat_history": history})
return history + [("User", msg), ("Assistant", response['answer'])]
except Exception as e:
return history + [("User", msg), ("Assistant", f"Error: {str(e)}")]
def demo():
with gr.Blocks() as demo:
vector_db = gr.State(value=None)
qa_chain = gr.State(value=None)
with gr.Tab("Step 1 - Upload and Process"):
with gr.Row():
document = gr.File(label="Upload your Japanese PDF document", file_types=["pdf"])
with gr.Row():
process_btn = gr.Button("Process PDF")
process_output = gr.Textbox(label="Processing Output")
with gr.Tab("Step 2 - Initialize QA Chatbot"):
with gr.Row():
llm_btn = gr.Radio(list_llm_simple, label="Select LLM Model", type="index")
llm_temperature = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, label="Temperature", value=0.7)
max_tokens = gr.Slider(minimum=128, maximum=2048, step=128, label="Max Tokens", value=1024)
top_k = gr.Slider(minimum=1, maximum=10, step=1, label="Top K", value=3)
with gr.Row():
init_qa_btn = gr.Button("Initialize QA Chatbot")
init_output = gr.Textbox(label="Initialization Output")
with gr.Tab("Step 3 - Chat with your Document"):
chatbot = gr.Chatbot()
message = gr.Textbox(label="Ask a question")
with gr.Row():
send_btn = gr.Button("Send")
clear_chat_btn = gr.Button("Clear Chat")
reset_all_btn = gr.Button("Reset All")
process_btn.click(
process_pdf,
inputs=[document],
outputs=[vector_db, process_output]
)
init_qa_btn.click(
initialize_qa_chain,
inputs=[llm_btn, llm_temperature, max_tokens, top_k, vector_db],
outputs=[qa_chain, init_output]
)
send_btn.click(
update_chat,
inputs=[message, chatbot, qa_chain],
outputs=[chatbot]
)
# Clear Chatボタン:チャット履歴のみをクリア
clear_chat_btn.click(
lambda: None,
outputs=[chatbot]
)
# Reset Allボタン:チャット履歴、PDFデータ、チャットボットの状態をすべてクリア
reset_all_btn.click(
lambda: (None, None, None),
outputs=[chatbot, vector_db, qa_chain]
)
return demo
if __name__ == "__main__":
demo().launch()