Spaces:
Running
Running
| from typing import Optional, Tuple, Union, List, Callable | |
| import logging | |
| import yaml | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torch.distributed as dist | |
| # from transformers.utils import TransformerKwargs | |
| from transformers import LlamaConfig, AutoConfig, AutoTokenizer, AutoModelForCausalLM | |
| from transformers.modeling_attn_mask_utils import AttentionMaskConverter | |
| from transformers.models.llama.modeling_llama import ( | |
| LlamaRotaryEmbedding, | |
| LlamaRMSNorm, | |
| LlamaMLP, | |
| LlamaDecoderLayer, | |
| LlamaPreTrainedModel, | |
| GenerationMixin, | |
| apply_rotary_pos_emb, | |
| eager_attention_forward, | |
| ) | |
| from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS | |
| from transformers.cache_utils import Cache, StaticCache, DynamicCache | |
| from transformers.modeling_flash_attention_utils import FlashAttentionKwargs | |
| from transformers.processing_utils import Unpack | |
| from transformers.utils import is_torchdynamo_compiling | |
| from models.modules import CausalLMOutputWithPast | |
| from transformers.modeling_layers import GradientCheckpointingLayer | |
| logger = logging.getLogger(__name__) | |
| def _prepare_4d_causal_attention_mask_with_cache_position( | |
| attention_mask: torch.Tensor, | |
| sequence_length: int, | |
| target_length: int, | |
| dtype: torch.dtype, | |
| device: torch.device, | |
| min_dtype: float, | |
| cache_position: torch.Tensor, | |
| batch_size: int, | |
| ): | |
| """ | |
| Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape | |
| `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. | |
| Args: | |
| attention_mask (`torch.Tensor`): | |
| A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. | |
| sequence_length (`int`): | |
| The sequence length being processed. | |
| target_length (`int`): | |
| The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. | |
| dtype (`torch.dtype`): | |
| The dtype to use for the 4D attention mask. | |
| device (`torch.device`): | |
| The device to plcae the 4D attention mask on. | |
| min_dtype (`float`): | |
| The minimum value representable with the dtype `dtype`. | |
| cache_position (`torch.Tensor`): | |
| Indices depicting the position of the input sequence tokens in the sequence. | |
| batch_size (`torch.Tensor`): | |
| Batch size. | |
| """ | |
| if attention_mask is not None and attention_mask.dim() == 4: | |
| # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. | |
| causal_mask = attention_mask | |
| else: | |
| causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) | |
| if sequence_length != 1: | |
| causal_mask = torch.triu(causal_mask, diagonal=1) | |
| causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) | |
| causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) | |
| if attention_mask is not None: | |
| causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit | |
| mask_length = attention_mask.shape[-1] | |
| padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] | |
| padding_mask = padding_mask == 0 | |
| causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( | |
| padding_mask, min_dtype | |
| ) | |
| return causal_mask | |
| class MiCRoLlamaConfig(LlamaConfig): | |
| model_type = "micro_llama" | |
| def __init__(self, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| self.num_experts = kwargs.get("num_experts", 4) | |
| self.use_router = kwargs.get("use_router", True) | |
| self.num_experts_per_tok = kwargs.get("num_experts_per_tok", 2) | |
| self.jitter_noise = kwargs.get("jitter_noise", 0.0) | |
| self.loss_method = kwargs.get("loss_method", "all") | |
| self.config_path = kwargs.get("config_path", None) | |
| class MiCRoLlamaDecoderLayer(nn.Module): | |
| def __init__(self, config: MiCRoLlamaConfig, layer_idx: int): | |
| super().__init__() | |
| self.hidden_dim = config.hidden_size | |
| self.ffn_dim = config.intermediate_size | |
| self.num_experts = config.num_experts | |
| self.top_k = config.num_experts_per_tok | |
| self.use_router = config.use_router | |
| self.ablate = config.ablate | |
| self.num_key_value_heads = config.num_key_value_heads | |
| self.head_dim = self.hidden_dim // config.num_attention_heads | |
| self.gradient_checkpointing = config.gradient_checkpointing | |
| if isinstance(self.ablate, str): | |
| self.ablate = [self.ablate] | |
| self.gate = nn.Sequential( | |
| nn.Linear(self.hidden_dim, self.hidden_dim, bias=False), | |
| nn.Linear(self.hidden_dim, self.num_experts, bias=False) | |
| ) | |
| self.num_layers = config.backbone_num_layers | |
| self.layer_idx = layer_idx | |
| self.experts = nn.ModuleList([LlamaDecoderLayer(config, layer_idx * self.num_experts + expert_idx) for expert_idx in range(self.num_experts)]) | |
| self.jitter_noise = config.jitter_noise | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| routing_weights: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| ablate: Optional[List[str]] = None, | |
| past_key_value: Optional[Cache] = None, | |
| output_attentions: Optional[bool] = False, | |
| use_cache: Optional[bool] = False, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46 | |
| **kwargs, | |
| ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | |
| batch_size, sequence_length, hidden_dim = hidden_states.shape | |
| if ablate is not None: | |
| self.ablate = ablate | |
| if self.training and self.jitter_noise > 0: | |
| hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise) | |
| if self.use_router: | |
| router_logits = self.gate(hidden_states) | |
| if "logic" in self.ablate: | |
| router_logits[..., 0] = -torch.inf | |
| if "social" in self.ablate: | |
| router_logits[..., 1] = -torch.inf | |
| if "world" in self.ablate: | |
| router_logits[..., 2] = -torch.inf | |
| if "language" in self.ablate: | |
| router_logits[..., 3] = -torch.inf | |
| routing_weights = F.softmax(router_logits, dim=-1, dtype=torch.float) | |
| else: | |
| if len(routing_weights.shape) == 2: | |
| routing_weights = routing_weights.unsqueeze(1).tile((1,sequence_length,1)).float() | |
| else: | |
| routing_weights = routing_weights.float() | |
| router_logits = routing_weights | |
| routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) | |
| routing_weights /= (routing_weights.sum(dim=-1, keepdim=True) + 1e-9) | |
| # we cast back to the input dtype | |
| routing_weights = routing_weights.to(hidden_states.dtype) | |
| # We'll accumulate outputs here | |
| final_hidden_states = torch.zeros_like(hidden_states) | |
| # Flatten final_hidden_states to [batch_size * seq_len, hidden_dim] | |
| # so we can do a 2D "index_add_" at the end of each loop. | |
| final_hidden_states_2d = final_hidden_states.view(-1, hidden_dim) | |
| # One hot encode the selected experts to create an expert mask | |
| # this will be used to easily index which expert is going to be sollicitated | |
| expert_mask = F.one_hot(selected_experts, num_classes=self.num_experts) | |
| #^ [batch_size, seq_len, top_k, num_experts] | |
| # Loop over all available experts in the model and perform the computation on each expert | |
| for expert_idx in range(self.num_experts): | |
| expert_layer: LlamaDecoderLayer = self.experts[expert_idx] | |
| batch_indices, seq_indices, top_k_indices = torch.where(expert_mask[..., expert_idx]) | |
| if not self.training and sequence_length == 1 and batch_indices.numel() == 0: | |
| if past_key_value is not None: | |
| hidden_state_ln_norm = expert_layer.input_layernorm(hidden_states) | |
| input_shape = hidden_state_ln_norm.shape[:-1] | |
| hidden_shape = (*input_shape, -1, self.head_dim) | |
| # query_states = expert_layer.self_attn.q_proj(hidden_state_ln_norm).view(hidden_shape).transpose(1, 2) | |
| key_states = expert_layer.self_attn.k_proj(hidden_state_ln_norm).view(hidden_shape).transpose(1, 2) | |
| value_states = expert_layer.self_attn.v_proj(hidden_state_ln_norm).view(hidden_shape).transpose(1, 2) | |
| cos, sin = position_embeddings | |
| _, key_states = apply_rotary_pos_emb(key_states, key_states, cos, sin) | |
| # sin and cos are specific to RoPE models; cache_position needed for the static cache | |
| cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | |
| past_key_value.update(key_states, value_states, self.layer_idx * self.num_experts + expert_idx, cache_kwargs) | |
| continue | |
| if self.gradient_checkpointing and self.training: | |
| current_hidden_states = self._gradient_checkpointing_func( | |
| expert_layer.__call__, | |
| hidden_states, | |
| attention_mask, | |
| position_ids, | |
| past_key_value, | |
| output_attentions, | |
| use_cache, | |
| cache_position, | |
| position_embeddings, | |
| )[0] | |
| else: | |
| current_hidden_states = expert_layer( | |
| hidden_states=hidden_states, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| past_key_value=past_key_value, | |
| output_attentions=output_attentions, | |
| use_cache=use_cache, | |
| cache_position=cache_position, | |
| position_embeddings=position_embeddings, | |
| **kwargs, | |
| )[0] | |
| flat_idx = batch_indices * sequence_length + seq_indices | |
| expert_weights = routing_weights[batch_indices, seq_indices, top_k_indices].unsqueeze(-1) | |
| current_hidden_states = current_hidden_states[batch_indices, seq_indices] * expert_weights | |
| final_hidden_states_2d.index_add_(0, flat_idx, current_hidden_states.to(hidden_states.dtype)) | |
| final_hidden_states = final_hidden_states_2d.view(batch_size, sequence_length, hidden_dim) | |
| return final_hidden_states, router_logits | |
| class MiCRoLlama(LlamaPreTrainedModel, GenerationMixin): | |
| config_class = MiCRoLlamaConfig | |
| def __init__(self, config: MiCRoLlamaConfig): | |
| with open(config.config_path, 'r', encoding="utf-8") as file: | |
| run_config = yaml.load(file.read(), Loader=yaml.FullLoader) | |
| self.config: MiCRoLlamaConfig = config | |
| self.config.torch_dtype = torch.bfloat16 | |
| self.config.use_bfloat16 = True | |
| self.config._attn_implementation = "eager" # {sdpa, flash_attention_2, eager} | |
| self.config.backbone_num_layers = self.config.num_hidden_layers | |
| self.config.num_hidden_layers = self.config.num_hidden_layers * run_config["num-experts"] | |
| self.config.loss_type = "ForCausalLMLoss" | |
| super(MiCRoLlama, self).__init__(self.config) | |
| self.build_model(run_config) | |
| def build_model(self, run_config): | |
| self.gradient_checkpointing = False | |
| self.config.num_experts = run_config["num-experts"] | |
| self.config.use_router = run_config["use-router"] | |
| self.config.num_experts_per_tok = run_config["top-k-experts"] | |
| print(f">> Number of Experts per Token: {self.config.num_experts_per_tok}") | |
| self.config.jitter_noise = run_config["jitter-noise"] | |
| self.config.loss_method = run_config.get("loss", "all") | |
| self.config.gradient_checkpointing = run_config.get("gradient-checkpointing", False) | |
| print(f">> Gradient Checkpointing: {self.config.gradient_checkpointing}") | |
| self.run_config = run_config | |
| self.padding_idx = 2 if "smollm2" in run_config["model"] else 128004 | |
| # MiCRoLlama model | |
| self.embed_tokens = nn.Embedding(self.config.vocab_size, self.config.hidden_size, self.padding_idx) | |
| self.layers = nn.ModuleList([MiCRoLlamaDecoderLayer(self.config, layer_idx) for layer_idx in range(self.config.backbone_num_layers)]) | |
| self.lm_head = nn.Linear(self.config.hidden_size, self.config.vocab_size, bias=False) | |
| self.rotary_emb = LlamaRotaryEmbedding(config=self.config) | |
| self.final_norm = LlamaRMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps) | |
| if "model" not in run_config["trainable"]: | |
| print(">> Freezing Model Except Routing Gates") | |
| for param in self.parameters(): | |
| param.requires_grad = False | |
| for layer in self.layers: | |
| layer: MiCRoLlamaDecoderLayer | |
| for param in layer.gate.parameters(): | |
| param.requires_grad = True | |
| if "experts-router" not in run_config["trainable"]: | |
| print(">> Freezing Routing Gates") | |
| for layer in self.layers: | |
| layer: MiCRoLlamaDecoderLayer | |
| for param in layer.gate.parameters(): | |
| param.requires_grad = False | |
| def forward(self, | |
| input_ids: torch.LongTensor = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| experts_ablate: Optional[List[str]] = None, | |
| routing_weights: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| logits_to_keep: Union[int, torch.Tensor] = 0, | |
| **kwargs: Unpack[FlashAttentionKwargs], | |
| ): | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if (input_ids is None) ^ (inputs_embeds is not None): | |
| raise ValueError("You must specify exactly one of input_ids or inputs_embeds") | |
| if self.gradient_checkpointing and self.training and use_cache: | |
| logger.warning_once( | |
| "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." | |
| ) | |
| use_cache = False | |
| if inputs_embeds is None: | |
| inputs_embeds = self.embed_tokens(input_ids) | |
| if use_cache and past_key_values is None: | |
| past_key_values = DynamicCache() | |
| if cache_position is None: | |
| past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | |
| cache_position = torch.arange( | |
| past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device | |
| ) | |
| if position_ids is None: | |
| position_ids = cache_position.unsqueeze(0) | |
| causal_mask = self._update_causal_mask( | |
| attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions | |
| ) | |
| hidden_states = inputs_embeds | |
| # create position embeddings to be shared across the decoder layers | |
| position_embeddings = self.rotary_emb(hidden_states, position_ids) | |
| # decoder layers | |
| all_hidden_states = () if output_hidden_states else None | |
| all_self_attns = () if output_attentions else None | |
| all_routing_weights = () | |
| for decoder_layer in self.layers: | |
| if output_hidden_states: | |
| all_hidden_states += (hidden_states,) | |
| if self.gradient_checkpointing and self.training and False: | |
| layer_outputs, router_logits = self._gradient_checkpointing_func( | |
| decoder_layer.__call__, | |
| hidden_states, | |
| routing_weights, | |
| causal_mask, | |
| position_ids, | |
| experts_ablate, | |
| past_key_values, | |
| output_attentions, | |
| use_cache, | |
| cache_position, | |
| position_embeddings, | |
| ) | |
| else: | |
| layer_outputs, router_logits = decoder_layer( | |
| hidden_states, | |
| routing_weights=routing_weights, | |
| attention_mask=causal_mask, | |
| position_ids=position_ids, | |
| ablate=experts_ablate, | |
| past_key_value=past_key_values, | |
| output_attentions=output_attentions, | |
| use_cache=use_cache, | |
| cache_position=cache_position, | |
| position_embeddings=position_embeddings, | |
| **kwargs, | |
| ) | |
| hidden_states = layer_outputs | |
| if output_attentions: | |
| all_self_attns += (layer_outputs[1],) | |
| all_routing_weights += (router_logits,) | |
| hidden_states = self.final_norm(hidden_states) | |
| # add hidden states from the last decoder layer | |
| if output_hidden_states: | |
| all_hidden_states += (hidden_states,) | |
| # Only compute necessary logits, and do not upcast them to float if we are not computing the loss | |
| slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep | |
| logits = self.lm_head(hidden_states[:, slice_indices, :]) | |
| loss = None | |
| if labels is not None: | |
| loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) | |
| if not return_dict: | |
| output = (logits,) + (past_key_values, all_hidden_states, all_self_attns, all_routing_weights) if use_cache else (logits, all_hidden_states, all_self_attns, all_routing_weights) | |
| return (loss,) + output if loss is not None else output | |
| return CausalLMOutputWithPast( | |
| loss=loss, | |
| logits=logits, | |
| past_key_values=past_key_values if use_cache else None, | |
| hidden_states=all_hidden_states, | |
| attentions=all_self_attns, | |
| routing_weights=all_routing_weights, | |
| ) | |
| def _update_causal_mask( | |
| self, | |
| attention_mask: torch.Tensor, | |
| input_tensor: torch.Tensor, | |
| cache_position: torch.Tensor, | |
| past_key_values: Cache, | |
| output_attentions: bool, | |
| ): | |
| if self.config._attn_implementation == "flash_attention_2": | |
| if attention_mask is not None and 0.0 in attention_mask: | |
| return attention_mask | |
| return None | |
| # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in | |
| # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail | |
| # to infer the attention mask. | |
| past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | |
| using_static_cache = isinstance(past_key_values, StaticCache) | |
| # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward | |
| if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: | |
| if AttentionMaskConverter._ignore_causal_mask_sdpa( | |
| attention_mask, | |
| inputs_embeds=input_tensor, | |
| past_key_values_length=past_seen_tokens, | |
| is_training=self.training, | |
| ): | |
| return None | |
| dtype, device = input_tensor.dtype, input_tensor.device | |
| min_dtype = torch.finfo(dtype).min | |
| sequence_length = input_tensor.shape[1] | |
| if using_static_cache: | |
| target_length = past_key_values.get_max_length() | |
| else: | |
| target_length = ( | |
| attention_mask.shape[-1] | |
| if isinstance(attention_mask, torch.Tensor) | |
| else past_seen_tokens + sequence_length + 1 | |
| ) | |
| # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). | |
| causal_mask = _prepare_4d_causal_attention_mask_with_cache_position( | |
| attention_mask, | |
| sequence_length=sequence_length, | |
| target_length=target_length, | |
| dtype=dtype, | |
| device=device, | |
| min_dtype=min_dtype, | |
| cache_position=cache_position, | |
| batch_size=input_tensor.shape[0], | |
| ) | |
| if ( | |
| self.config._attn_implementation == "sdpa" | |
| and attention_mask is not None | |
| and attention_mask.device.type == "cuda" | |
| and not output_attentions | |
| ): | |
| # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when | |
| # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. | |
| # Details: https://github.com/pytorch/pytorch/issues/110213 | |
| causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) | |
| return causal_mask | |
| def load_pretrained(self, model_name): | |
| base_model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16) | |
| self.lm_head.load_state_dict(base_model.lm_head.state_dict()) | |
| self.embed_tokens.load_state_dict(base_model.get_input_embeddings().state_dict()) | |
| self.rotary_emb.load_state_dict(base_model.model.rotary_emb.state_dict()) | |
| self.final_norm.load_state_dict(base_model.model.norm.state_dict()) | |
| for layer_idx, layer in enumerate(self.layers): | |
| base_model_layer = base_model.model.layers[layer_idx].state_dict() | |
| for expert in layer.experts: | |
| expert.load_state_dict(base_model_layer) | |
| def prepare_inputs_for_generation( | |
| self, | |
| input_ids, | |
| past_key_values=None, | |
| attention_mask=None, | |
| inputs_embeds=None, | |
| cache_position=None, | |
| position_ids=None, | |
| experts_ablate=None, | |
| use_cache=True, | |
| num_logits_to_keep=None, | |
| **kwargs, | |
| ): | |
| # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens | |
| # Exception 1: when passing input_embeds, input_ids may be missing entries | |
| # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here | |
| if past_key_values is not None: | |
| if inputs_embeds is not None: # Exception 1 | |
| input_ids = input_ids[:, -cache_position.shape[0] :] | |
| elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2) | |
| input_ids = input_ids[:, cache_position] | |
| if attention_mask is not None and position_ids is None: | |
| # create position_ids on the fly for batch generation | |
| position_ids = attention_mask.long().cumsum(-1) - 1 | |
| position_ids.masked_fill_(attention_mask == 0, 1) | |
| if past_key_values: | |
| position_ids = position_ids[:, -input_ids.shape[1] :] | |
| # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture. | |
| position_ids = position_ids.clone(memory_format=torch.contiguous_format) | |
| # if `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
| if inputs_embeds is not None and cache_position[0] == 0: | |
| model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None} | |
| else: | |
| # The clone here is for the same reason as for `position_ids`. | |
| model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None} | |
| if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2: | |
| if model_inputs["inputs_embeds"] is not None: | |
| batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape | |
| device = model_inputs["inputs_embeds"].device | |
| else: | |
| batch_size, sequence_length = model_inputs["input_ids"].shape | |
| device = model_inputs["input_ids"].device | |
| dtype = self.lm_head.weight.dtype | |
| min_dtype = torch.finfo(dtype).min | |
| attention_mask = _prepare_4d_causal_attention_mask_with_cache_position( | |
| attention_mask, | |
| sequence_length=sequence_length, | |
| target_length=past_key_values.get_max_length(), | |
| dtype=dtype, | |
| device=device, | |
| min_dtype=min_dtype, | |
| cache_position=cache_position, | |
| batch_size=batch_size, | |
| ) | |
| if num_logits_to_keep is not None: | |
| model_inputs["num_logits_to_keep"] = num_logits_to_keep | |
| model_inputs.update( | |
| { | |
| "experts_ablate": experts_ablate, | |
| "position_ids": position_ids, | |
| "cache_position": cache_position, | |
| "past_key_values": past_key_values, | |
| "use_cache": use_cache, | |
| "attention_mask": attention_mask, | |
| } | |
| ) | |
| return model_inputs | |
| AutoConfig.register("micro_llama", MiCRoLlamaConfig) | |
| AutoModelForCausalLM.register(MiCRoLlamaConfig, MiCRoLlama) |