cognitive-reasoners / models /micro_llama.py
bkhmsi's picture
removed flash attention
9a48e97
from typing import Optional, Tuple, Union, List, Callable
import logging
import yaml
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
# from transformers.utils import TransformerKwargs
from transformers import LlamaConfig, AutoConfig, AutoTokenizer, AutoModelForCausalLM
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from transformers.models.llama.modeling_llama import (
LlamaRotaryEmbedding,
LlamaRMSNorm,
LlamaMLP,
LlamaDecoderLayer,
LlamaPreTrainedModel,
GenerationMixin,
apply_rotary_pos_emb,
eager_attention_forward,
)
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS
from transformers.cache_utils import Cache, StaticCache, DynamicCache
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.processing_utils import Unpack
from transformers.utils import is_torchdynamo_compiling
from models.modules import CausalLMOutputWithPast
from transformers.modeling_layers import GradientCheckpointingLayer
logger = logging.getLogger(__name__)
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
min_dtype: float,
cache_position: torch.Tensor,
batch_size: int,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to plcae the 4D attention mask on.
min_dtype (`float`):
The minimum value representable with the dtype `dtype`.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
class MiCRoLlamaConfig(LlamaConfig):
model_type = "micro_llama"
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.num_experts = kwargs.get("num_experts", 4)
self.use_router = kwargs.get("use_router", True)
self.num_experts_per_tok = kwargs.get("num_experts_per_tok", 2)
self.jitter_noise = kwargs.get("jitter_noise", 0.0)
self.loss_method = kwargs.get("loss_method", "all")
self.config_path = kwargs.get("config_path", None)
class MiCRoLlamaDecoderLayer(nn.Module):
def __init__(self, config: MiCRoLlamaConfig, layer_idx: int):
super().__init__()
self.hidden_dim = config.hidden_size
self.ffn_dim = config.intermediate_size
self.num_experts = config.num_experts
self.top_k = config.num_experts_per_tok
self.use_router = config.use_router
self.ablate = config.ablate
self.num_key_value_heads = config.num_key_value_heads
self.head_dim = self.hidden_dim // config.num_attention_heads
self.gradient_checkpointing = config.gradient_checkpointing
if isinstance(self.ablate, str):
self.ablate = [self.ablate]
self.gate = nn.Sequential(
nn.Linear(self.hidden_dim, self.hidden_dim, bias=False),
nn.Linear(self.hidden_dim, self.num_experts, bias=False)
)
self.num_layers = config.backbone_num_layers
self.layer_idx = layer_idx
self.experts = nn.ModuleList([LlamaDecoderLayer(config, layer_idx * self.num_experts + expert_idx) for expert_idx in range(self.num_experts)])
self.jitter_noise = config.jitter_noise
def forward(
self,
hidden_states: torch.Tensor,
routing_weights: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
ablate: Optional[List[str]] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
batch_size, sequence_length, hidden_dim = hidden_states.shape
if ablate is not None:
self.ablate = ablate
if self.training and self.jitter_noise > 0:
hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise)
if self.use_router:
router_logits = self.gate(hidden_states)
if "logic" in self.ablate:
router_logits[..., 0] = -torch.inf
if "social" in self.ablate:
router_logits[..., 1] = -torch.inf
if "world" in self.ablate:
router_logits[..., 2] = -torch.inf
if "language" in self.ablate:
router_logits[..., 3] = -torch.inf
routing_weights = F.softmax(router_logits, dim=-1, dtype=torch.float)
else:
if len(routing_weights.shape) == 2:
routing_weights = routing_weights.unsqueeze(1).tile((1,sequence_length,1)).float()
else:
routing_weights = routing_weights.float()
router_logits = routing_weights
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
routing_weights /= (routing_weights.sum(dim=-1, keepdim=True) + 1e-9)
# we cast back to the input dtype
routing_weights = routing_weights.to(hidden_states.dtype)
# We'll accumulate outputs here
final_hidden_states = torch.zeros_like(hidden_states)
# Flatten final_hidden_states to [batch_size * seq_len, hidden_dim]
# so we can do a 2D "index_add_" at the end of each loop.
final_hidden_states_2d = final_hidden_states.view(-1, hidden_dim)
# One hot encode the selected experts to create an expert mask
# this will be used to easily index which expert is going to be sollicitated
expert_mask = F.one_hot(selected_experts, num_classes=self.num_experts)
#^ [batch_size, seq_len, top_k, num_experts]
# Loop over all available experts in the model and perform the computation on each expert
for expert_idx in range(self.num_experts):
expert_layer: LlamaDecoderLayer = self.experts[expert_idx]
batch_indices, seq_indices, top_k_indices = torch.where(expert_mask[..., expert_idx])
if not self.training and sequence_length == 1 and batch_indices.numel() == 0:
if past_key_value is not None:
hidden_state_ln_norm = expert_layer.input_layernorm(hidden_states)
input_shape = hidden_state_ln_norm.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
# query_states = expert_layer.self_attn.q_proj(hidden_state_ln_norm).view(hidden_shape).transpose(1, 2)
key_states = expert_layer.self_attn.k_proj(hidden_state_ln_norm).view(hidden_shape).transpose(1, 2)
value_states = expert_layer.self_attn.v_proj(hidden_state_ln_norm).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
_, key_states = apply_rotary_pos_emb(key_states, key_states, cos, sin)
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
past_key_value.update(key_states, value_states, self.layer_idx * self.num_experts + expert_idx, cache_kwargs)
continue
if self.gradient_checkpointing and self.training:
current_hidden_states = self._gradient_checkpointing_func(
expert_layer.__call__,
hidden_states,
attention_mask,
position_ids,
past_key_value,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)[0]
else:
current_hidden_states = expert_layer(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)[0]
flat_idx = batch_indices * sequence_length + seq_indices
expert_weights = routing_weights[batch_indices, seq_indices, top_k_indices].unsqueeze(-1)
current_hidden_states = current_hidden_states[batch_indices, seq_indices] * expert_weights
final_hidden_states_2d.index_add_(0, flat_idx, current_hidden_states.to(hidden_states.dtype))
final_hidden_states = final_hidden_states_2d.view(batch_size, sequence_length, hidden_dim)
return final_hidden_states, router_logits
class MiCRoLlama(LlamaPreTrainedModel, GenerationMixin):
config_class = MiCRoLlamaConfig
def __init__(self, config: MiCRoLlamaConfig):
with open(config.config_path, 'r', encoding="utf-8") as file:
run_config = yaml.load(file.read(), Loader=yaml.FullLoader)
self.config: MiCRoLlamaConfig = config
self.config.torch_dtype = torch.bfloat16
self.config.use_bfloat16 = True
self.config._attn_implementation = "eager" # {sdpa, flash_attention_2, eager}
self.config.backbone_num_layers = self.config.num_hidden_layers
self.config.num_hidden_layers = self.config.num_hidden_layers * run_config["num-experts"]
self.config.loss_type = "ForCausalLMLoss"
super(MiCRoLlama, self).__init__(self.config)
self.build_model(run_config)
def build_model(self, run_config):
self.gradient_checkpointing = False
self.config.num_experts = run_config["num-experts"]
self.config.use_router = run_config["use-router"]
self.config.num_experts_per_tok = run_config["top-k-experts"]
print(f">> Number of Experts per Token: {self.config.num_experts_per_tok}")
self.config.jitter_noise = run_config["jitter-noise"]
self.config.loss_method = run_config.get("loss", "all")
self.config.gradient_checkpointing = run_config.get("gradient-checkpointing", False)
print(f">> Gradient Checkpointing: {self.config.gradient_checkpointing}")
self.run_config = run_config
self.padding_idx = 2 if "smollm2" in run_config["model"] else 128004
# MiCRoLlama model
self.embed_tokens = nn.Embedding(self.config.vocab_size, self.config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList([MiCRoLlamaDecoderLayer(self.config, layer_idx) for layer_idx in range(self.config.backbone_num_layers)])
self.lm_head = nn.Linear(self.config.hidden_size, self.config.vocab_size, bias=False)
self.rotary_emb = LlamaRotaryEmbedding(config=self.config)
self.final_norm = LlamaRMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps)
if "model" not in run_config["trainable"]:
print(">> Freezing Model Except Routing Gates")
for param in self.parameters():
param.requires_grad = False
for layer in self.layers:
layer: MiCRoLlamaDecoderLayer
for param in layer.gate.parameters():
param.requires_grad = True
if "experts-router" not in run_config["trainable"]:
print(">> Freezing Routing Gates")
for layer in self.layers:
layer: MiCRoLlamaDecoderLayer
for param in layer.gate.parameters():
param.requires_grad = False
def forward(self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
experts_ablate: Optional[List[str]] = None,
routing_weights: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[FlashAttentionKwargs],
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_routing_weights = ()
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training and False:
layer_outputs, router_logits = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
routing_weights,
causal_mask,
position_ids,
experts_ablate,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs, router_logits = decoder_layer(
hidden_states,
routing_weights=routing_weights,
attention_mask=causal_mask,
position_ids=position_ids,
ablate=experts_ablate,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = layer_outputs
if output_attentions:
all_self_attns += (layer_outputs[1],)
all_routing_weights += (router_logits,)
hidden_states = self.final_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
if not return_dict:
output = (logits,) + (past_key_values, all_hidden_states, all_self_attns, all_routing_weights) if use_cache else (logits, all_hidden_states, all_self_attns, all_routing_weights)
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
routing_weights=all_routing_weights,
)
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_length()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
min_dtype=min_dtype,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
def load_pretrained(self, model_name):
base_model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
self.lm_head.load_state_dict(base_model.lm_head.state_dict())
self.embed_tokens.load_state_dict(base_model.get_input_embeddings().state_dict())
self.rotary_emb.load_state_dict(base_model.model.rotary_emb.state_dict())
self.final_norm.load_state_dict(base_model.model.norm.state_dict())
for layer_idx, layer in enumerate(self.layers):
base_model_layer = base_model.model.layers[layer_idx].state_dict()
for expert in layer.experts:
expert.load_state_dict(base_model_layer)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
experts_ablate=None,
use_cache=True,
num_logits_to_keep=None,
**kwargs,
):
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
# Exception 1: when passing input_embeds, input_ids may be missing entries
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
if past_key_values is not None:
if inputs_embeds is not None: # Exception 1
input_ids = input_ids[:, -cache_position.shape[0] :]
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
input_ids = input_ids[:, cache_position]
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and cache_position[0] == 0:
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
else:
# The clone here is for the same reason as for `position_ids`.
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
if model_inputs["inputs_embeds"] is not None:
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
device = model_inputs["inputs_embeds"].device
else:
batch_size, sequence_length = model_inputs["input_ids"].shape
device = model_inputs["input_ids"].device
dtype = self.lm_head.weight.dtype
min_dtype = torch.finfo(dtype).min
attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=past_key_values.get_max_length(),
dtype=dtype,
device=device,
min_dtype=min_dtype,
cache_position=cache_position,
batch_size=batch_size,
)
if num_logits_to_keep is not None:
model_inputs["num_logits_to_keep"] = num_logits_to_keep
model_inputs.update(
{
"experts_ablate": experts_ablate,
"position_ids": position_ids,
"cache_position": cache_position,
"past_key_values": past_key_values,
"use_cache": use_cache,
"attention_mask": attention_mask,
}
)
return model_inputs
AutoConfig.register("micro_llama", MiCRoLlamaConfig)
AutoModelForCausalLM.register(MiCRoLlamaConfig, MiCRoLlama)