Font-To-Sketch / code /utils.py
Badr AlKhamissi
starting space
913d3e3
raw
history blame
8.9 kB
import collections.abc
import os
import os.path as osp
from torch import nn
import kornia.augmentation as K
import pydiffvg
import save_svg
import cv2
from ttf import font_string_to_svgs, font_string_to_svgs_hb, normalize_letter_size
import torch
import numpy as np
def edict_2_dict(x):
if isinstance(x, dict):
xnew = {}
for k in x:
xnew[k] = edict_2_dict(x[k])
return xnew
elif isinstance(x, list):
xnew = []
for i in range(len(x)):
xnew.append( edict_2_dict(x[i]))
return xnew
else:
return x
def check_and_create_dir(path):
pathdir = osp.split(path)[0]
if osp.isdir(pathdir):
pass
else:
os.makedirs(pathdir)
def update(d, u):
"""https://stackoverflow.com/questions/3232943/update-value-of-a-nested-dictionary-of-varying-depth"""
for k, v in u.items():
if isinstance(v, collections.abc.Mapping):
d[k] = update(d.get(k, {}), v)
else:
d[k] = v
return d
def preprocess(font, word, letter, level_of_cc=1):
if level_of_cc == 0:
target_cp = None
else:
target_cp = {"A": 120, "B": 120, "C": 100, "D": 100,
"E": 120, "F": 120, "G": 120, "H": 120,
"I": 35, "J": 80, "K": 100, "L": 80,
"M": 100, "N": 100, "O": 100, "P": 120,
"Q": 120, "R": 130, "S": 110, "T": 90,
"U": 100, "V": 100, "W": 100, "X": 130,
"Y": 120, "Z": 120,
"a": 120, "b": 120, "c": 100, "d": 100,
"e": 120, "f": 120, "g": 120, "h": 120,
"i": 35, "j": 80, "k": 100, "l": 80,
"m": 100, "n": 100, "o": 100, "p": 120,
"q": 120, "r": 130, "s": 110, "t": 90,
"u": 100, "v": 100, "w": 100, "x": 130,
"y": 120, "z": 120
}
target_cp = {k: v * level_of_cc for k, v in target_cp.items()}
print(f"======= {font} =======")
if font[0] in ['0', '1', '2']:
font_path = f"code/data/arabic-fonts/{font}.ttf"
else:
font_path = f"code/data/fonts/{font}.ttf"
init_path = f"code/data/init"
subdivision_thresh = None
chars = font_string_to_svgs_hb(init_path, font_path, word, target_control=target_cp,
subdivision_thresh=subdivision_thresh)
normalize_letter_size(init_path, font_path, word, chars)
# optimaize two adjacent letters
if len(letter) > 1:
subdivision_thresh = None
font_string_to_svgs_hb(init_path, font_path, letter, target_control=target_cp,
subdivision_thresh=subdivision_thresh)
normalize_letter_size(init_path, font_path, letter, chars)
print("Done preprocess")
def get_data_augs(cut_size):
augmentations = []
augmentations.append(K.RandomPerspective(distortion_scale=0.5, p=0.7))
augmentations.append(K.RandomCrop(size=(cut_size, cut_size), pad_if_needed=True, padding_mode='reflect', p=1.0))
return nn.Sequential(*augmentations)
'''pytorch adaptation of https://github.com/google/mipnerf'''
def learning_rate_decay(step,
lr_init,
lr_final,
max_steps,
lr_delay_steps=0,
lr_delay_mult=1):
"""Continuous learning rate decay function.
The returned rate is lr_init when step=0 and lr_final when step=max_steps, and
is log-linearly interpolated elsewhere (equivalent to exponential decay).
If lr_delay_steps>0 then the learning rate will be scaled by some smooth
function of lr_delay_mult, such that the initial learning rate is
lr_init*lr_delay_mult at the beginning of optimization but will be eased back
to the normal learning rate when steps>lr_delay_steps.
Args:
step: int, the current optimization step.
lr_init: float, the initial learning rate.
lr_final: float, the final learning rate.
max_steps: int, the number of steps during optimization.
lr_delay_steps: int, the number of steps to delay the full learning rate.
lr_delay_mult: float, the multiplier on the rate when delaying it.
Returns:
lr: the learning for current step 'step'.
"""
if lr_delay_steps > 0:
# A kind of reverse cosine decay.
delay_rate = lr_delay_mult + (1 - lr_delay_mult) * np.sin(
0.5 * np.pi * np.clip(step / lr_delay_steps, 0, 1))
else:
delay_rate = 1.
t = np.clip(step / max_steps, 0, 1)
log_lerp = np.exp(np.log(lr_init) * (1 - t) + np.log(lr_final) * t)
return delay_rate * log_lerp
def save_image(img, filename, gamma=1):
check_and_create_dir(filename)
imshow = img.detach().cpu()
pydiffvg.imwrite(imshow, filename, gamma=gamma)
def get_letter_ids(letter, word, shape_groups):
for group, l in zip(shape_groups, word):
if l == letter:
return group.shape_ids
def combine_word(word, letter, font, experiment_dir):
word_svg_scaled = f"./code/data/init/{font}_{word}_scaled.svg"
canvas_width_word, canvas_height_word, shapes_word, shape_groups_word = pydiffvg.svg_to_scene(word_svg_scaled)
letter_ids = []
for l in letter:
letter_ids += get_letter_ids(l, word, shape_groups_word)
w_min, w_max = min([torch.min(shapes_word[ids].points[:, 0]) for ids in letter_ids]), max(
[torch.max(shapes_word[ids].points[:, 0]) for ids in letter_ids])
h_min, h_max = min([torch.min(shapes_word[ids].points[:, 1]) for ids in letter_ids]), max(
[torch.max(shapes_word[ids].points[:, 1]) for ids in letter_ids])
c_w = (-w_min + w_max) / 2
c_h = (-h_min + h_max) / 2
svg_result = os.path.join(experiment_dir, "output-svg", "output.svg")
canvas_width, canvas_height, shapes, shape_groups = pydiffvg.svg_to_scene(svg_result)
out_w_min, out_w_max = min([torch.min(p.points[:, 0]) for p in shapes]), max(
[torch.max(p.points[:, 0]) for p in shapes])
out_h_min, out_h_max = min([torch.min(p.points[:, 1]) for p in shapes]), max(
[torch.max(p.points[:, 1]) for p in shapes])
out_c_w = (-out_w_min + out_w_max) / 2
out_c_h = (-out_h_min + out_h_max) / 2
scale_canvas_w = (w_max - w_min) / (out_w_max - out_w_min)
scale_canvas_h = (h_max - h_min) / (out_h_max - out_h_min)
if scale_canvas_h > scale_canvas_w:
wsize = int((out_w_max - out_w_min) * scale_canvas_h)
scale_canvas_w = wsize / (out_w_max - out_w_min)
shift_w = -out_c_w * scale_canvas_w + c_w
else:
hsize = int((out_h_max - out_h_min) * scale_canvas_w)
scale_canvas_h = hsize / (out_h_max - out_h_min)
shift_h = -out_c_h * scale_canvas_h + c_h
for num, p in enumerate(shapes):
p.points[:, 0] = p.points[:, 0] * scale_canvas_w
p.points[:, 1] = p.points[:, 1] * scale_canvas_h
if scale_canvas_h > scale_canvas_w:
p.points[:, 0] = p.points[:, 0] - out_w_min * scale_canvas_w + w_min + shift_w
p.points[:, 1] = p.points[:, 1] - out_h_min * scale_canvas_h + h_min
else:
p.points[:, 0] = p.points[:, 0] - out_w_min * scale_canvas_w + w_min
p.points[:, 1] = p.points[:, 1] - out_h_min * scale_canvas_h + h_min + shift_h
for j, s in enumerate(letter_ids):
shapes_word[s] = shapes[j]
save_svg.save_svg(
f"{experiment_dir}/{font}_{word}_{letter}.svg", canvas_width, canvas_height, shapes_word,
shape_groups_word)
render = pydiffvg.RenderFunction.apply
scene_args = pydiffvg.RenderFunction.serialize_scene(canvas_width, canvas_height, shapes_word, shape_groups_word)
img = render(canvas_width, canvas_height, 2, 2, 0, None, *scene_args)
img = img[:, :, 3:4] * img[:, :, :3] + \
torch.ones(img.shape[0], img.shape[1], 3, device="cuda:0") * (1 - img[:, :, 3:4])
img = img[:, :, :3]
save_image(img, f"{experiment_dir}/{font}_{word}_{letter}.png")
def create_video(num_iter, experiment_dir, video_frame_freq):
img_array = []
for ii in range(0, num_iter):
if ii % video_frame_freq == 0 or ii == num_iter - 1:
filename = os.path.join(
experiment_dir, "video-png", f"iter{ii:04d}.png")
img = cv2.imread(filename)
img_array.append(img)
video_name = os.path.join(
experiment_dir, "video.mp4")
check_and_create_dir(video_name)
out = cv2.VideoWriter(video_name, cv2.VideoWriter_fourcc(*'mp4v'), 30.0, (600, 600))
for iii in range(len(img_array)):
out.write(img_array[iii])
out.release()