EFDM / function.py
biubiubiiu's picture
add EFDM
c9b624b
raw
history blame
4.62 kB
import torch
from skimage.exposure import match_histograms
import numpy as np
def calc_mean_std(feat, eps=1e-5):
# eps is a small value added to the variance to avoid divide-by-zero.
size = feat.size()
assert (len(size) == 4)
N, C = size[:2]
feat_var = feat.view(N, C, -1).var(dim=2) + eps
feat_std = feat_var.sqrt().view(N, C, 1, 1)
feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1)
return feat_mean, feat_std
def adaptive_instance_normalization(content_feat, style_feat):
assert (content_feat.size()[:2] == style_feat.size()[:2])
size = content_feat.size()
style_mean, style_std = calc_mean_std(style_feat)
content_mean, content_std = calc_mean_std(content_feat)
normalized_feat = (content_feat - content_mean.expand(
size)) / content_std.expand(size)
return normalized_feat * style_std.expand(size) + style_mean.expand(size)
## AdaMean
def adaptive_mean_normalization(content_feat, style_feat):
assert (content_feat.size()[:2] == style_feat.size()[:2])
size = content_feat.size()
style_mean, style_std = calc_mean_std(style_feat)
content_mean, content_std = calc_mean_std(content_feat)
normalized_feat = (content_feat - content_mean.expand(
size))
return normalized_feat + style_mean.expand(size)
## AdaStd
def adaptive_std_normalization(content_feat, style_feat):
assert (content_feat.size()[:2] == style_feat.size()[:2])
size = content_feat.size()
style_mean, style_std = calc_mean_std(style_feat)
content_mean, content_std = calc_mean_std(content_feat)
normalized_feat = (content_feat) / content_std.expand(size)
return normalized_feat * style_std.expand(size)
## EFDM
def exact_feature_distribution_matching(content_feat, style_feat):
assert (content_feat.size() == style_feat.size())
B, C, W, H = content_feat.size(0), content_feat.size(1), content_feat.size(2), content_feat.size(3)
value_content, index_content = torch.sort(content_feat.view(B,C,-1)) # sort conduct a deep copy here.
value_style, _ = torch.sort(style_feat.view(B,C,-1)) # sort conduct a deep copy here.
inverse_index = index_content.argsort(-1)
new_content = content_feat.view(B,C,-1) + (value_style.gather(-1, inverse_index) - content_feat.view(B,C,-1).detach())
return new_content.view(B, C, W, H)
## HM
def histogram_matching(content_feat, style_feat):
assert (content_feat.size() == style_feat.size())
B, C, W, H = content_feat.size(0), content_feat.size(1), content_feat.size(2), content_feat.size(3)
x_view = content_feat.view(-1, W,H)
image1_temp = match_histograms(np.array(x_view.detach().clone().cpu().float().transpose(0, 2)),
np.array(style_feat.view(-1, W, H).detach().clone().cpu().float().transpose(0, 2)),
multichannel=True)
image1_temp = torch.from_numpy(image1_temp).float().to(content_feat.device).transpose(0, 2).view(B, C, W, H)
return content_feat + (image1_temp - content_feat).detach()
def _calc_feat_flatten_mean_std(feat):
# takes 3D feat (C, H, W), return mean and std of array within channels
assert (feat.size()[0] == 3)
assert (isinstance(feat, torch.FloatTensor))
feat_flatten = feat.view(3, -1)
mean = feat_flatten.mean(dim=-1, keepdim=True)
std = feat_flatten.std(dim=-1, keepdim=True)
return feat_flatten, mean, std
def _mat_sqrt(x):
U, D, V = torch.svd(x)
return torch.mm(torch.mm(U, D.pow(0.5).diag()), V.t())
def coral(source, target):
# assume both source and target are 3D array (C, H, W)
# Note: flatten -> f
source_f, source_f_mean, source_f_std = _calc_feat_flatten_mean_std(source)
source_f_norm = (source_f - source_f_mean.expand_as(
source_f)) / source_f_std.expand_as(source_f)
source_f_cov_eye = \
torch.mm(source_f_norm, source_f_norm.t()) + torch.eye(3)
target_f, target_f_mean, target_f_std = _calc_feat_flatten_mean_std(target)
target_f_norm = (target_f - target_f_mean.expand_as(
target_f)) / target_f_std.expand_as(target_f)
target_f_cov_eye = \
torch.mm(target_f_norm, target_f_norm.t()) + torch.eye(3)
source_f_norm_transfer = torch.mm(
_mat_sqrt(target_f_cov_eye),
torch.mm(torch.inverse(_mat_sqrt(source_f_cov_eye)),
source_f_norm)
)
source_f_transfer = source_f_norm_transfer * \
target_f_std.expand_as(source_f_norm) + \
target_f_mean.expand_as(source_f_norm)
return source_f_transfer.view(source.size())