Spaces:
Runtime error
Runtime error
import torch | |
from skimage.exposure import match_histograms | |
import numpy as np | |
def calc_mean_std(feat, eps=1e-5): | |
# eps is a small value added to the variance to avoid divide-by-zero. | |
size = feat.size() | |
assert (len(size) == 4) | |
N, C = size[:2] | |
feat_var = feat.view(N, C, -1).var(dim=2) + eps | |
feat_std = feat_var.sqrt().view(N, C, 1, 1) | |
feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1) | |
return feat_mean, feat_std | |
def adaptive_instance_normalization(content_feat, style_feat): | |
assert (content_feat.size()[:2] == style_feat.size()[:2]) | |
size = content_feat.size() | |
style_mean, style_std = calc_mean_std(style_feat) | |
content_mean, content_std = calc_mean_std(content_feat) | |
normalized_feat = (content_feat - content_mean.expand( | |
size)) / content_std.expand(size) | |
return normalized_feat * style_std.expand(size) + style_mean.expand(size) | |
## AdaMean | |
def adaptive_mean_normalization(content_feat, style_feat): | |
assert (content_feat.size()[:2] == style_feat.size()[:2]) | |
size = content_feat.size() | |
style_mean, style_std = calc_mean_std(style_feat) | |
content_mean, content_std = calc_mean_std(content_feat) | |
normalized_feat = (content_feat - content_mean.expand( | |
size)) | |
return normalized_feat + style_mean.expand(size) | |
## AdaStd | |
def adaptive_std_normalization(content_feat, style_feat): | |
assert (content_feat.size()[:2] == style_feat.size()[:2]) | |
size = content_feat.size() | |
style_mean, style_std = calc_mean_std(style_feat) | |
content_mean, content_std = calc_mean_std(content_feat) | |
normalized_feat = (content_feat) / content_std.expand(size) | |
return normalized_feat * style_std.expand(size) | |
## EFDM | |
def exact_feature_distribution_matching(content_feat, style_feat): | |
assert (content_feat.size() == style_feat.size()) | |
B, C, W, H = content_feat.size(0), content_feat.size(1), content_feat.size(2), content_feat.size(3) | |
value_content, index_content = torch.sort(content_feat.view(B,C,-1)) # sort conduct a deep copy here. | |
value_style, _ = torch.sort(style_feat.view(B,C,-1)) # sort conduct a deep copy here. | |
inverse_index = index_content.argsort(-1) | |
new_content = content_feat.view(B,C,-1) + (value_style.gather(-1, inverse_index) - content_feat.view(B,C,-1).detach()) | |
return new_content.view(B, C, W, H) | |
## HM | |
def histogram_matching(content_feat, style_feat): | |
assert (content_feat.size() == style_feat.size()) | |
B, C, W, H = content_feat.size(0), content_feat.size(1), content_feat.size(2), content_feat.size(3) | |
x_view = content_feat.view(-1, W,H) | |
image1_temp = match_histograms(np.array(x_view.detach().clone().cpu().float().transpose(0, 2)), | |
np.array(style_feat.view(-1, W, H).detach().clone().cpu().float().transpose(0, 2)), | |
multichannel=True) | |
image1_temp = torch.from_numpy(image1_temp).float().to(content_feat.device).transpose(0, 2).view(B, C, W, H) | |
return content_feat + (image1_temp - content_feat).detach() | |
def _calc_feat_flatten_mean_std(feat): | |
# takes 3D feat (C, H, W), return mean and std of array within channels | |
assert (feat.size()[0] == 3) | |
assert (isinstance(feat, torch.FloatTensor)) | |
feat_flatten = feat.view(3, -1) | |
mean = feat_flatten.mean(dim=-1, keepdim=True) | |
std = feat_flatten.std(dim=-1, keepdim=True) | |
return feat_flatten, mean, std | |
def _mat_sqrt(x): | |
U, D, V = torch.svd(x) | |
return torch.mm(torch.mm(U, D.pow(0.5).diag()), V.t()) | |
def coral(source, target): | |
# assume both source and target are 3D array (C, H, W) | |
# Note: flatten -> f | |
source_f, source_f_mean, source_f_std = _calc_feat_flatten_mean_std(source) | |
source_f_norm = (source_f - source_f_mean.expand_as( | |
source_f)) / source_f_std.expand_as(source_f) | |
source_f_cov_eye = \ | |
torch.mm(source_f_norm, source_f_norm.t()) + torch.eye(3) | |
target_f, target_f_mean, target_f_std = _calc_feat_flatten_mean_std(target) | |
target_f_norm = (target_f - target_f_mean.expand_as( | |
target_f)) / target_f_std.expand_as(target_f) | |
target_f_cov_eye = \ | |
torch.mm(target_f_norm, target_f_norm.t()) + torch.eye(3) | |
source_f_norm_transfer = torch.mm( | |
_mat_sqrt(target_f_cov_eye), | |
torch.mm(torch.inverse(_mat_sqrt(source_f_cov_eye)), | |
source_f_norm) | |
) | |
source_f_transfer = source_f_norm_transfer * \ | |
target_f_std.expand_as(source_f_norm) + \ | |
target_f_mean.expand_as(source_f_norm) | |
return source_f_transfer.view(source.size()) | |