import torch | |
import torchvision | |
from torch import nn | |
def create_effnet_b2_model(num_classes : int = 3, | |
seed : int = 42): | |
effnetb2_weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT | |
effnetb2_transforms = effnetb2_weights.transforms() | |
effnetb2 = torchvision.models.efficientnet_b2(weights=effnetb2_weights) | |
for p in effnetb2.parameters(): | |
p.requires_grad = False | |
torch.manual_seed(seed) | |
#torch.cuda.manual_seed(seed) | |
effnetb2.classifier = nn.Sequential( | |
torch.nn.Dropout(p=0.3, | |
inplace=True), | |
torch.nn.Linear(in_features=1408, | |
out_features=num_classes, | |
bias=True) | |
) | |
return effnetb2, effnetb2_transforms | |