|
import gradio as gr |
|
import os |
|
import torch |
|
from model import create_effnet_b2_model |
|
from timeit import default_timer as timer |
|
from typing import List, Dict |
|
|
|
class_names = ['pizza', 'steak', 'sushi'] |
|
|
|
effnetb2, effnetb2_transforms = create_effnet_b2_model( |
|
num_classes=3) |
|
|
|
|
|
effnetb2.load_state_dict( |
|
torch.load( |
|
f='09_pretrained_effnet_b2_feature_extractor_20%.pth', |
|
map_location=torch.device('cpu') |
|
) |
|
) |
|
|
|
|
|
|
|
def predict(img) -> Tuple[Dict, float]: |
|
|
|
start_time = timer() |
|
|
|
img = effnetb2_transforms(img).unsqueeze(0) |
|
|
|
effnetb2.eval() |
|
with torch.inference_mode(): |
|
pred_probs = torch.softmax(effnetb2(img), dim=1) |
|
pred_labels_and_probs = {class_names[i] :float(pred_probs[0,i]) for i in \ |
|
range(len(class_names))} |
|
end_time = timer() |
|
pred_time = round(end_time - start_time, 4) |
|
|
|
return pred_labels_and_probs, pred_time |
|
|
|
|
|
examples_list = [['examples/' + example] for example in os.listdir('examples')] |
|
examples_list |
|
|
|
|
|
|
|
title = 'foodvision mini' |
|
description = 'effnet feature extractor for image classification' |
|
article = 'course type-along' |
|
|
|
|
|
demo = gr.Interface(fn=predict, |
|
inputs=gr.Image(type='pil'), |
|
outputs = [gr.Label(num_top_classes=3,label='predictions'), |
|
gr.Number(label='Prediction time(s)')], |
|
examples=example_list, |
|
title=title, |
|
description=description, |
|
article=article) |
|
|