Spaces:
Runtime error
Runtime error
import json | |
import time | |
import logging | |
import traceback | |
import requests | |
# config_private.py放自己的秘密如API和代理网址 | |
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件 | |
from toolbox import ( | |
get_conf, | |
update_ui, | |
is_the_upload_folder, | |
) | |
proxies, TIMEOUT_SECONDS, MAX_RETRY = get_conf( | |
"proxies", "TIMEOUT_SECONDS", "MAX_RETRY" | |
) | |
timeout_bot_msg = ( | |
"[Local Message] Request timeout. Network error. Please check proxy settings in config.py." | |
+ "网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。" | |
) | |
def get_full_error(chunk, stream_response): | |
""" | |
尝试获取完整的错误信息 | |
""" | |
while True: | |
try: | |
chunk += next(stream_response) | |
except: | |
break | |
return chunk | |
def decode_chunk(chunk): | |
""" | |
用于解读"content"和"finish_reason"的内容 | |
""" | |
chunk = chunk.decode() | |
respose = "" | |
finish_reason = "False" | |
try: | |
chunk = json.loads(chunk[6:]) | |
except: | |
respose = "" | |
finish_reason = chunk | |
# 错误处理部分 | |
if "error" in chunk: | |
respose = "API_ERROR" | |
try: | |
chunk = json.loads(chunk) | |
finish_reason = chunk["error"]["code"] | |
except: | |
finish_reason = "API_ERROR" | |
return respose, finish_reason | |
try: | |
respose = chunk["choices"][0]["delta"]["content"] | |
except: | |
pass | |
try: | |
finish_reason = chunk["choices"][0]["finish_reason"] | |
except: | |
pass | |
return respose, finish_reason | |
def generate_message(input, model, key, history, max_output_token, system_prompt, temperature): | |
""" | |
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备 | |
""" | |
api_key = f"Bearer {key}" | |
headers = {"Content-Type": "application/json", "Authorization": api_key} | |
conversation_cnt = len(history) // 2 | |
messages = [{"role": "system", "content": system_prompt}] | |
if conversation_cnt: | |
for index in range(0, 2 * conversation_cnt, 2): | |
what_i_have_asked = {} | |
what_i_have_asked["role"] = "user" | |
what_i_have_asked["content"] = history[index] | |
what_gpt_answer = {} | |
what_gpt_answer["role"] = "assistant" | |
what_gpt_answer["content"] = history[index + 1] | |
if what_i_have_asked["content"] != "": | |
if what_gpt_answer["content"] == "": | |
continue | |
if what_gpt_answer["content"] == timeout_bot_msg: | |
continue | |
messages.append(what_i_have_asked) | |
messages.append(what_gpt_answer) | |
else: | |
messages[-1]["content"] = what_gpt_answer["content"] | |
what_i_ask_now = {} | |
what_i_ask_now["role"] = "user" | |
what_i_ask_now["content"] = input | |
messages.append(what_i_ask_now) | |
playload = { | |
"model": model, | |
"messages": messages, | |
"temperature": temperature, | |
"stream": True, | |
"max_tokens": max_output_token, | |
} | |
try: | |
print(f" {model} : {conversation_cnt} : {input[:100]} ..........") | |
except: | |
print("输入中可能存在乱码。") | |
return headers, playload | |
def get_predict_function( | |
api_key_conf_name, | |
max_output_token, | |
disable_proxy = False | |
): | |
""" | |
为openai格式的API生成响应函数,其中传入参数: | |
api_key_conf_name: | |
`config.py`中此模型的APIKEY的名字,例如"YIMODEL_API_KEY" | |
max_output_token: | |
每次请求的最大token数量,例如对于01万物的yi-34b-chat-200k,其最大请求数为4096 | |
⚠️请不要与模型的最大token数量相混淆。 | |
disable_proxy: | |
是否使用代理,True为不使用,False为使用。 | |
""" | |
APIKEY = get_conf(api_key_conf_name) | |
def predict_no_ui_long_connection( | |
inputs, | |
llm_kwargs, | |
history=[], | |
sys_prompt="", | |
observe_window=None, | |
console_slience=False, | |
): | |
""" | |
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。 | |
inputs: | |
是本次问询的输入 | |
sys_prompt: | |
系统静默prompt | |
llm_kwargs: | |
chatGPT的内部调优参数 | |
history: | |
是之前的对话列表 | |
observe_window = None: | |
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗 | |
""" | |
watch_dog_patience = 5 # 看门狗的耐心,设置5秒不准咬人(咬的也不是人 | |
if len(APIKEY) == 0: | |
raise RuntimeError(f"APIKEY为空,请检查配置文件的{APIKEY}") | |
if inputs == "": | |
inputs = "你好👋" | |
headers, playload = generate_message( | |
input=inputs, | |
model=llm_kwargs["llm_model"], | |
key=APIKEY, | |
history=history, | |
max_output_token=max_output_token, | |
system_prompt=sys_prompt, | |
temperature=llm_kwargs["temperature"], | |
) | |
retry = 0 | |
while True: | |
try: | |
from .bridge_all import model_info | |
endpoint = model_info[llm_kwargs["llm_model"]]["endpoint"] | |
if not disable_proxy: | |
response = requests.post( | |
endpoint, | |
headers=headers, | |
proxies=proxies, | |
json=playload, | |
stream=True, | |
timeout=TIMEOUT_SECONDS, | |
) | |
else: | |
response = requests.post( | |
endpoint, | |
headers=headers, | |
json=playload, | |
stream=True, | |
timeout=TIMEOUT_SECONDS, | |
) | |
break | |
except: | |
retry += 1 | |
traceback.print_exc() | |
if retry > MAX_RETRY: | |
raise TimeoutError | |
if MAX_RETRY != 0: | |
print(f"请求超时,正在重试 ({retry}/{MAX_RETRY}) ……") | |
stream_response = response.iter_lines() | |
result = "" | |
finish_reason = "" | |
while True: | |
try: | |
chunk = next(stream_response) | |
except StopIteration: | |
if result == "": | |
raise RuntimeError(f"获得空的回复,可能原因:{finish_reason}") | |
break | |
except requests.exceptions.ConnectionError: | |
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。 | |
response_text, finish_reason = decode_chunk(chunk) | |
# 返回的数据流第一次为空,继续等待 | |
if response_text == "" and finish_reason != "False": | |
continue | |
if response_text == "API_ERROR" and ( | |
finish_reason != "False" or finish_reason != "stop" | |
): | |
chunk = get_full_error(chunk, stream_response) | |
chunk_decoded = chunk.decode() | |
print(chunk_decoded) | |
raise RuntimeError( | |
f"API异常,请检测终端输出。可能的原因是:{finish_reason}" | |
) | |
if chunk: | |
try: | |
if finish_reason == "stop": | |
logging.info(f"[response] {result}") | |
break | |
result += response_text | |
if not console_slience: | |
print(response_text, end="") | |
if observe_window is not None: | |
# 观测窗,把已经获取的数据显示出去 | |
if len(observe_window) >= 1: | |
observe_window[0] += response_text | |
# 看门狗,如果超过期限没有喂狗,则终止 | |
if len(observe_window) >= 2: | |
if (time.time() - observe_window[1]) > watch_dog_patience: | |
raise RuntimeError("用户取消了程序。") | |
except Exception as e: | |
chunk = get_full_error(chunk, stream_response) | |
chunk_decoded = chunk.decode() | |
error_msg = chunk_decoded | |
print(error_msg) | |
raise RuntimeError("Json解析不合常规") | |
return result | |
def predict( | |
inputs, | |
llm_kwargs, | |
plugin_kwargs, | |
chatbot, | |
history=[], | |
system_prompt="", | |
stream=True, | |
additional_fn=None, | |
): | |
""" | |
发送至chatGPT,流式获取输出。 | |
用于基础的对话功能。 | |
inputs 是本次问询的输入 | |
top_p, temperature是chatGPT的内部调优参数 | |
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误) | |
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容 | |
additional_fn代表点击的哪个按钮,按钮见functional.py | |
""" | |
if len(APIKEY) == 0: | |
raise RuntimeError(f"APIKEY为空,请检查配置文件的{APIKEY}") | |
if inputs == "": | |
inputs = "你好👋" | |
if additional_fn is not None: | |
from core_functional import handle_core_functionality | |
inputs, history = handle_core_functionality( | |
additional_fn, inputs, history, chatbot | |
) | |
logging.info(f"[raw_input] {inputs}") | |
chatbot.append((inputs, "")) | |
yield from update_ui( | |
chatbot=chatbot, history=history, msg="等待响应" | |
) # 刷新界面 | |
# check mis-behavior | |
if is_the_upload_folder(inputs): | |
chatbot[-1] = ( | |
inputs, | |
f"[Local Message] 检测到操作错误!当您上传文档之后,需点击“**函数插件区**”按钮进行处理,请勿点击“提交”按钮或者“基础功能区”按钮。", | |
) | |
yield from update_ui( | |
chatbot=chatbot, history=history, msg="正常" | |
) # 刷新界面 | |
time.sleep(2) | |
headers, playload = generate_message( | |
input=inputs, | |
model=llm_kwargs["llm_model"], | |
key=APIKEY, | |
history=history, | |
max_output_token=max_output_token, | |
system_prompt=system_prompt, | |
temperature=llm_kwargs["temperature"], | |
) | |
history.append(inputs) | |
history.append("") | |
retry = 0 | |
while True: | |
try: | |
from .bridge_all import model_info | |
endpoint = model_info[llm_kwargs["llm_model"]]["endpoint"] | |
if not disable_proxy: | |
response = requests.post( | |
endpoint, | |
headers=headers, | |
proxies=proxies, | |
json=playload, | |
stream=True, | |
timeout=TIMEOUT_SECONDS, | |
) | |
else: | |
response = requests.post( | |
endpoint, | |
headers=headers, | |
json=playload, | |
stream=True, | |
timeout=TIMEOUT_SECONDS, | |
) | |
break | |
except: | |
retry += 1 | |
chatbot[-1] = (chatbot[-1][0], timeout_bot_msg) | |
retry_msg = ( | |
f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else "" | |
) | |
yield from update_ui( | |
chatbot=chatbot, history=history, msg="请求超时" + retry_msg | |
) # 刷新界面 | |
if retry > MAX_RETRY: | |
raise TimeoutError | |
gpt_replying_buffer = "" | |
stream_response = response.iter_lines() | |
while True: | |
try: | |
chunk = next(stream_response) | |
except StopIteration: | |
break | |
except requests.exceptions.ConnectionError: | |
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。 | |
response_text, finish_reason = decode_chunk(chunk) | |
# 返回的数据流第一次为空,继续等待 | |
if response_text == "" and finish_reason != "False": | |
status_text = f"finish_reason: {finish_reason}" | |
yield from update_ui( | |
chatbot=chatbot, history=history, msg=status_text | |
) | |
continue | |
if chunk: | |
try: | |
if response_text == "API_ERROR" and ( | |
finish_reason != "False" or finish_reason != "stop" | |
): | |
chunk = get_full_error(chunk, stream_response) | |
chunk_decoded = chunk.decode() | |
chatbot[-1] = ( | |
chatbot[-1][0], | |
"[Local Message] {finish_reason},获得以下报错信息:\n" | |
+ chunk_decoded, | |
) | |
yield from update_ui( | |
chatbot=chatbot, | |
history=history, | |
msg="API异常:" + chunk_decoded, | |
) # 刷新界面 | |
print(chunk_decoded) | |
return | |
if finish_reason == "stop": | |
logging.info(f"[response] {gpt_replying_buffer}") | |
break | |
status_text = f"finish_reason: {finish_reason}" | |
gpt_replying_buffer += response_text | |
# 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出 | |
history[-1] = gpt_replying_buffer | |
chatbot[-1] = (history[-2], history[-1]) | |
yield from update_ui( | |
chatbot=chatbot, history=history, msg=status_text | |
) # 刷新界面 | |
except Exception as e: | |
yield from update_ui( | |
chatbot=chatbot, history=history, msg="Json解析不合常规" | |
) # 刷新界面 | |
chunk = get_full_error(chunk, stream_response) | |
chunk_decoded = chunk.decode() | |
chatbot[-1] = ( | |
chatbot[-1][0], | |
"[Local Message] 解析错误,获得以下报错信息:\n" + chunk_decoded, | |
) | |
yield from update_ui( | |
chatbot=chatbot, history=history, msg="Json异常" + chunk_decoded | |
) # 刷新界面 | |
print(chunk_decoded) | |
return | |
return predict_no_ui_long_connection, predict | |