Spaces:
biodivx
/
Sleeping

voj / bird_ast_seq_model.py
Your Name
update app.py
dddb9f9
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import ASTConfig, ASTFeatureExtractor, ASTModel
BirdAST_FEATURE_EXTRACTOR = ASTFeatureExtractor()
DEFAULT_SR = 16_000
DEFAULT_BACKBONE = "MIT/ast-finetuned-audioset-10-10-0.4593"
DEFAULT_N_CLASSES = 728
DEFAULT_ACTIVATION = "silu"
DEFAULT_N_MLP_LAYERS = 1
def birdast_seq_preprocess(audio_array, sr=DEFAULT_SR):
"""
Preprocess audio array for BirdAST model
audio_array: np.array, audio array of the recording, shape (n_samples,) Note: The audio array should be normalized to [-1, 1]
sr: int, sampling rate of the audio array (default: 16_000)
Note:
1. The audio array should be normalized to [-1, 1].
2. The audio length should be 10 seconds (or 10.24 seconds). Longer audio will be truncated.
"""
# Extract features
features = BirdAST_FEATURE_EXTRACTOR(audio_array, sampling_rate=sr, padding="max_length", return_tensors="pt")
# Convert to PyTorch tensor
spectrogram = torch.tensor(features['input_values']).squeeze(0)
return spectrogram
def birdast_seq_inference(
model_weights,
spectrogram,
device = 'cpu',
backbone_name=DEFAULT_BACKBONE,
n_classes=DEFAULT_N_CLASSES,
activation=DEFAULT_ACTIVATION,
n_mlp_layers=DEFAULT_N_MLP_LAYERS
):
"""
Perform inference on BirdAST model
model_weights: list, list of model weights
spectrogram: torch.Tensor, spectrogram tensor, shape (batch_size, n_frames, n_mels,)
device: str, device to run inference (default: 'cpu')
backbone_name: str, name of the backbone model (default: 'MIT/ast-finetuned-audioset-10-10-0.4593')
n_classes: int, number of classes (default: 728)
activation: str, activation function (default: 'silu')
n_mlp_layers: int, number of MLP layers (default: 1)
Returns:
predictions: np.array, array of predictions, shape (n_models, batch_size, n_classes)
"""
model = BirdAST_Seq(
backbone_name=backbone_name,
n_classes=n_classes,
n_mlp_layers=n_mlp_layers,
activation=activation
)
predict_collects = []
for _weight in model_weights:
model.load_state_dict(torch.load(_weight, map_location=device))
if device != 'cpu': model.to(device)
model.eval()
with torch.no_grad():
if device != 'cpu': spectrogram = spectrogram.to(device)
#check if the input tensor is in the correct shape
if spectrogram.dim() == 2:
spectrogram = spectrogram.unsqueeze(0) #-> (batch_size, n_frames, n_mels)
output = model(spectrogram)
logits = output['logits']
predictions = F.softmax(logits, dim=1)
predict_collects.append(predictions)
if device != 'cpu':
predict_collects = [pred.cpu() for pred in predict_collects]
predict_collects = torch.cat(predict_collects, dim=0).numpy()
return predict_collects
class SelfAttentionPooling(nn.Module):
"""
Implementation of SelfAttentionPooling
Original Paper: Self-Attention Encoding and Pooling for Speaker Recognition
https://arxiv.org/pdf/2008.01077v1.pdf
"""
def __init__(self, input_dim):
super(SelfAttentionPooling, self).__init__()
self.W = nn.Linear(input_dim, 1)
self.softmax = nn.Softmax(dim=1)
def forward(self, batch_rep):
"""
input:
batch_rep : size (N, T, H), N: batch size, T: sequence length, H: Hidden dimension
attention_weight:
att_w : size (N, T, 1)
return:
utter_rep: size (N, H)
"""
att_w = self.softmax(self.W(batch_rep).squeeze(-1)).unsqueeze(-1)
utter_rep = torch.sum(batch_rep * att_w, dim=1)
return utter_rep
class BirdAST_Seq(nn.Module):
def __init__(self, backbone_name, n_classes, n_mlp_layers=1, activation='silu'):
super(BirdAST_Seq, self).__init__()
# pre-trained backbone
backbone_config = ASTConfig.from_pretrained(backbone_name)
self.ast = ASTModel.from_pretrained(backbone_name, config=backbone_config)
self.hidden_size = backbone_config.hidden_size
# set activation functions
if activation == 'relu':
self.activation = nn.ReLU()
elif activation == 'silu':
self.activation = nn.SiLU()
elif activation == 'gelu':
self.activation = nn.GELU()
else:
raise ValueError("Unsupported activation function. Choose 'relu', 'silu' or 'gelu'")
#define self-attention pooling layer
self.sa_pool = SelfAttentionPooling(self.hidden_size)
# define MLP layers with activation
layers = []
for _ in range(n_mlp_layers):
layers.append(nn.Linear(self.hidden_size, self.hidden_size))
layers.append(self.activation)
layers.append(nn.Linear(self.hidden_size, n_classes))
self.mlp = nn.Sequential(*layers)
def forward(self, spectrogram):
# spectrogram: (batch_size, n_mels, n_frames)
# output: (batch_size, n_classes)
ast_output = self.ast(spectrogram, output_hidden_states=False)
hidden_state = ast_output.last_hidden_state
pool_output = self.sa_pool(hidden_state)
logits = self.mlp(pool_output)
return {'logits': logits}
if __name__ == '__main__':
import numpy as np
import matplotlib.pyplot as plt
# example usage of BirdAST_Seq
# create random audio array
audio_array = np.random.randn(160_000 * 10)
# Preprocess audio array
spectrogram = birdast_seq_preprocess(audio_array)
model_weights_dir = '/workspace/voice_of_jungle/training_logs'
# Load model weights
model_weights = [f'{model_weights_dir}/BirdAST_SeqPool_GroupKFold_fold_{i}.pth' for i in range(5)]
# Perform inference
predictions = birdast_seq_inference(model_weights, spectrogram.unsqueeze(0))
# Plot predictions
fig, ax = plt.subplots()
for i, pred in enumerate(predictions):
ax.plot(pred[0], label=f'model_{i}')
ax.legend()
fig.savefig('test_BirdAST_Seq.png')
print("Inference completed successfully!")