Spaces:
biodivx
/
Sleeping

voj / utils.py
Your Name
update app.py
dddb9f9
raw
history blame
1.72 kB
import os, requests
import matplotlib.pyplot as plt
import numpy as np
import librosa
import noisereduce as nr
from scipy.signal import butter, lfilter
def bandpass_filter(data, lowcut, highcut, sr, order=5):
nyquist = 0.5 * sr
low = lowcut / nyquist
high = highcut / nyquist
b, a = butter(order, [low, high], btype='band')
y = lfilter(b, a, data)
return y
def plot_mel(sr, x):
mel_spec = librosa.feature.melspectrogram(y=x, sr=sr, n_mels=128, fmax=10000)
mel_spec_db = librosa.power_to_db(mel_spec, ref=np.max)
mel_spec_db = (mel_spec_db - mel_spec_db.min()) / (mel_spec_db.max() - mel_spec_db.min()) # normalize spectrogram to [0,1]
# mel_spec_db = np.stack([mel_spec_db, mel_spec_db, mel_spec_db], axis=-1) # Convert to 3-channel
fig, ax = plt.subplots(nrows=1, ncols=1, sharex=True)
librosa.display.specshow(mel_spec_db, sr=sr, x_axis='time', y_axis='mel', fmin = 0, fmax=10000, ax = ax)
return fig
def plot_wave(sr, x):
ry = nr.reduce_noise(y=x, sr=sr)
fig, ax = plt.subplots(2, 1, figsize=(12, 8))
# Plot the original waveform
librosa.display.waveshow(x, sr=sr, ax=ax[0])
ax[0].set(title='Original Waveform')
ax[0].set_xlabel('Time (s)')
ax[0].set_ylabel('Amplitude')
# Plot the noise-reduced waveform
librosa.display.waveshow(ry, sr=sr, ax=ax[1])
ax[1].set(title='Noise Reduced Waveform')
ax[1].set_xlabel('Time (s)')
ax[1].set_ylabel('Amplitude')
plt.tight_layout()
return fig
def download_model(url, model_path):
response = requests.get(url)
response.raise_for_status() # Ensure the request was successful
with open(model_path, 'wb') as f:
f.write(response.content)