top-g-dev's picture
Duplicate from amirDev/crowd-counting-p2p
eeab6c4
raw
history blame contribute delete
No virus
13.2 kB
import torch
import torch.nn.functional as F
from torch import nn
from util.misc import (NestedTensor, nested_tensor_from_tensor_list,
accuracy, get_world_size, interpolate,
is_dist_avail_and_initialized)
from .backbone import build_backbone
from .matcher import build_matcher_crowd
import numpy as np
import time
# the network frmawork of the regression branch
class RegressionModel(nn.Module):
def __init__(self, num_features_in, num_anchor_points=4, feature_size=256):
super(RegressionModel, self).__init__()
self.conv1 = nn.Conv2d(num_features_in, feature_size, kernel_size=3, padding=1)
self.act1 = nn.ReLU()
self.conv2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
self.act2 = nn.ReLU()
self.conv3 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
self.act3 = nn.ReLU()
self.conv4 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
self.act4 = nn.ReLU()
self.output = nn.Conv2d(feature_size, num_anchor_points * 2, kernel_size=3, padding=1)
# sub-branch forward
def forward(self, x):
out = self.conv1(x)
out = self.act1(out)
out = self.conv2(out)
out = self.act2(out)
out = self.output(out)
out = out.permute(0, 2, 3, 1)
return out.contiguous().view(out.shape[0], -1, 2)
# the network frmawork of the classification branch
class ClassificationModel(nn.Module):
def __init__(self, num_features_in, num_anchor_points=4, num_classes=80, prior=0.01, feature_size=256):
super(ClassificationModel, self).__init__()
self.num_classes = num_classes
self.num_anchor_points = num_anchor_points
self.conv1 = nn.Conv2d(num_features_in, feature_size, kernel_size=3, padding=1)
self.act1 = nn.ReLU()
self.conv2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
self.act2 = nn.ReLU()
self.conv3 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
self.act3 = nn.ReLU()
self.conv4 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
self.act4 = nn.ReLU()
self.output = nn.Conv2d(feature_size, num_anchor_points * num_classes, kernel_size=3, padding=1)
self.output_act = nn.Sigmoid()
# sub-branch forward
def forward(self, x):
out = self.conv1(x)
out = self.act1(out)
out = self.conv2(out)
out = self.act2(out)
out = self.output(out)
out1 = out.permute(0, 2, 3, 1)
batch_size, width, height, _ = out1.shape
out2 = out1.view(batch_size, width, height, self.num_anchor_points, self.num_classes)
return out2.contiguous().view(x.shape[0], -1, self.num_classes)
# generate the reference points in grid layout
def generate_anchor_points(stride=16, row=3, line=3):
row_step = stride / row
line_step = stride / line
shift_x = (np.arange(1, line + 1) - 0.5) * line_step - stride / 2
shift_y = (np.arange(1, row + 1) - 0.5) * row_step - stride / 2
shift_x, shift_y = np.meshgrid(shift_x, shift_y)
anchor_points = np.vstack((
shift_x.ravel(), shift_y.ravel()
)).transpose()
return anchor_points
# shift the meta-anchor to get an acnhor points
def shift(shape, stride, anchor_points):
shift_x = (np.arange(0, shape[1]) + 0.5) * stride
shift_y = (np.arange(0, shape[0]) + 0.5) * stride
shift_x, shift_y = np.meshgrid(shift_x, shift_y)
shifts = np.vstack((
shift_x.ravel(), shift_y.ravel()
)).transpose()
A = anchor_points.shape[0]
K = shifts.shape[0]
all_anchor_points = (anchor_points.reshape((1, A, 2)) + shifts.reshape((1, K, 2)).transpose((1, 0, 2)))
all_anchor_points = all_anchor_points.reshape((K * A, 2))
return all_anchor_points
# this class generate all reference points on all pyramid levels
class AnchorPoints(nn.Module):
def __init__(self, pyramid_levels=None, strides=None, row=3, line=3):
super(AnchorPoints, self).__init__()
if pyramid_levels is None:
self.pyramid_levels = [3, 4, 5, 6, 7]
else:
self.pyramid_levels = pyramid_levels
if strides is None:
self.strides = [2 ** x for x in self.pyramid_levels]
self.row = row
self.line = line
def forward(self, image):
image_shape = image.shape[2:]
image_shape = np.array(image_shape)
image_shapes = [(image_shape + 2 ** x - 1) // (2 ** x) for x in self.pyramid_levels]
all_anchor_points = np.zeros((0, 2)).astype(np.float32)
# get reference points for each level
for idx, p in enumerate(self.pyramid_levels):
anchor_points = generate_anchor_points(2**p, row=self.row, line=self.line)
shifted_anchor_points = shift(image_shapes[idx], self.strides[idx], anchor_points)
all_anchor_points = np.append(all_anchor_points, shifted_anchor_points, axis=0)
all_anchor_points = np.expand_dims(all_anchor_points, axis=0)
# send reference points to device
if torch.cuda.is_available():
return torch.from_numpy(all_anchor_points.astype(np.float32)).cuda()
else:
return torch.from_numpy(all_anchor_points.astype(np.float32))
class Decoder(nn.Module):
def __init__(self, C3_size, C4_size, C5_size, feature_size=256):
super(Decoder, self).__init__()
# upsample C5 to get P5 from the FPN paper
self.P5_1 = nn.Conv2d(C5_size, feature_size, kernel_size=1, stride=1, padding=0)
self.P5_upsampled = nn.Upsample(scale_factor=2, mode='nearest')
self.P5_2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, stride=1, padding=1)
# add P5 elementwise to C4
self.P4_1 = nn.Conv2d(C4_size, feature_size, kernel_size=1, stride=1, padding=0)
self.P4_upsampled = nn.Upsample(scale_factor=2, mode='nearest')
self.P4_2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, stride=1, padding=1)
# add P4 elementwise to C3
self.P3_1 = nn.Conv2d(C3_size, feature_size, kernel_size=1, stride=1, padding=0)
self.P3_upsampled = nn.Upsample(scale_factor=2, mode='nearest')
self.P3_2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, stride=1, padding=1)
def forward(self, inputs):
C3, C4, C5 = inputs
P5_x = self.P5_1(C5)
P5_upsampled_x = self.P5_upsampled(P5_x)
P5_x = self.P5_2(P5_x)
P4_x = self.P4_1(C4)
P4_x = P5_upsampled_x + P4_x
P4_upsampled_x = self.P4_upsampled(P4_x)
P4_x = self.P4_2(P4_x)
P3_x = self.P3_1(C3)
P3_x = P3_x + P4_upsampled_x
P3_x = self.P3_2(P3_x)
return [P3_x, P4_x, P5_x]
# the defenition of the P2PNet model
class P2PNet(nn.Module):
def __init__(self, backbone, row=2, line=2):
super().__init__()
self.backbone = backbone
self.num_classes = 2
# the number of all anchor points
num_anchor_points = row * line
self.regression = RegressionModel(num_features_in=256, num_anchor_points=num_anchor_points)
self.classification = ClassificationModel(num_features_in=256, \
num_classes=self.num_classes, \
num_anchor_points=num_anchor_points)
self.anchor_points = AnchorPoints(pyramid_levels=[3,], row=row, line=line)
self.fpn = Decoder(256, 512, 512)
def forward(self, samples: NestedTensor):
# get the backbone features
features = self.backbone(samples)
# forward the feature pyramid
features_fpn = self.fpn([features[1], features[2], features[3]])
batch_size = features[0].shape[0]
# run the regression and classification branch
regression = self.regression(features_fpn[1]) * 100 # 8x
classification = self.classification(features_fpn[1])
anchor_points = self.anchor_points(samples).repeat(batch_size, 1, 1)
# decode the points as prediction
output_coord = regression + anchor_points
output_class = classification
out = {'pred_logits': output_class, 'pred_points': output_coord}
return out
class SetCriterion_Crowd(nn.Module):
def __init__(self, num_classes, matcher, weight_dict, eos_coef, losses):
""" Create the criterion.
Parameters:
num_classes: number of object categories, omitting the special no-object category
matcher: module able to compute a matching between targets and proposals
weight_dict: dict containing as key the names of the losses and as values their relative weight.
eos_coef: relative classification weight applied to the no-object category
losses: list of all the losses to be applied. See get_loss for list of available losses.
"""
super().__init__()
self.num_classes = num_classes
self.matcher = matcher
self.weight_dict = weight_dict
self.eos_coef = eos_coef
self.losses = losses
empty_weight = torch.ones(self.num_classes + 1)
empty_weight[0] = self.eos_coef
self.register_buffer('empty_weight', empty_weight)
def loss_labels(self, outputs, targets, indices, num_points):
"""Classification loss (NLL)
targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
"""
assert 'pred_logits' in outputs
src_logits = outputs['pred_logits']
idx = self._get_src_permutation_idx(indices)
target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)])
target_classes = torch.full(src_logits.shape[:2], 0,
dtype=torch.int64, device=src_logits.device)
target_classes[idx] = target_classes_o
loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight)
losses = {'loss_ce': loss_ce}
return losses
def loss_points(self, outputs, targets, indices, num_points):
assert 'pred_points' in outputs
idx = self._get_src_permutation_idx(indices)
src_points = outputs['pred_points'][idx]
target_points = torch.cat([t['point'][i] for t, (_, i) in zip(targets, indices)], dim=0)
loss_bbox = F.mse_loss(src_points, target_points, reduction='none')
losses = {}
losses['loss_point'] = loss_bbox.sum() / num_points
return losses
def _get_src_permutation_idx(self, indices):
# permute predictions following indices
batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
src_idx = torch.cat([src for (src, _) in indices])
return batch_idx, src_idx
def _get_tgt_permutation_idx(self, indices):
# permute targets following indices
batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
tgt_idx = torch.cat([tgt for (_, tgt) in indices])
return batch_idx, tgt_idx
def get_loss(self, loss, outputs, targets, indices, num_points, **kwargs):
loss_map = {
'labels': self.loss_labels,
'points': self.loss_points,
}
assert loss in loss_map, f'do you really want to compute {loss} loss?'
return loss_map[loss](outputs, targets, indices, num_points, **kwargs)
def forward(self, outputs, targets):
""" This performs the loss computation.
Parameters:
outputs: dict of tensors, see the output specification of the model for the format
targets: list of dicts, such that len(targets) == batch_size.
The expected keys in each dict depends on the losses applied, see each loss' doc
"""
output1 = {'pred_logits': outputs['pred_logits'], 'pred_points': outputs['pred_points']}
indices1 = self.matcher(output1, targets)
num_points = sum(len(t["labels"]) for t in targets)
num_points = torch.as_tensor([num_points], dtype=torch.float, device=next(iter(output1.values())).device)
if is_dist_avail_and_initialized():
torch.distributed.all_reduce(num_points)
num_boxes = torch.clamp(num_points / get_world_size(), min=1).item()
losses = {}
for loss in self.losses:
losses.update(self.get_loss(loss, output1, targets, indices1, num_boxes))
return losses
# create the P2PNet model
def build(args, training):
# treats persons as a single class
num_classes = 1
backbone = build_backbone(args)
model = P2PNet(backbone, args.row, args.line)
if not training:
return model
weight_dict = {'loss_ce': 1, 'loss_points': args.point_loss_coef}
losses = ['labels', 'points']
matcher = build_matcher_crowd(args)
criterion = SetCriterion_Crowd(num_classes, \
matcher=matcher, weight_dict=weight_dict, \
eos_coef=args.eos_coef, losses=losses)
return model, criterion