Spaces:
Runtime error
Runtime error
Commit
·
cee0410
1
Parent(s):
8c252e3
markdown edits
Browse files- demo_watermark.py +9 -7
demo_watermark.py
CHANGED
|
@@ -276,12 +276,14 @@ def format_names(s):
|
|
| 276 |
s=s.replace("green_fraction","Fraction of T in Greenlist")
|
| 277 |
s=s.replace("z_score","z-score")
|
| 278 |
s=s.replace("p_value","p value")
|
|
|
|
|
|
|
| 279 |
return s
|
| 280 |
|
| 281 |
def list_format_scores(score_dict, detection_threshold):
|
| 282 |
"""Format the detection metrics into a gradio dataframe input format"""
|
| 283 |
lst_2d = []
|
| 284 |
-
lst_2d.append(["z-score threshold", f"{detection_threshold}"])
|
| 285 |
for k,v in score_dict.items():
|
| 286 |
if k=='green_fraction':
|
| 287 |
lst_2d.append([format_names(k), f"{v:.1%}"])
|
|
@@ -293,6 +295,7 @@ def list_format_scores(score_dict, detection_threshold):
|
|
| 293 |
lst_2d.append([format_names(k), ("Watermarked" if v else "Human/Unwatermarked")])
|
| 294 |
else:
|
| 295 |
lst_2d.append([format_names(k), f"{v}"])
|
|
|
|
| 296 |
return lst_2d
|
| 297 |
|
| 298 |
def detect(input_text, args, device=None, tokenizer=None):
|
|
@@ -366,13 +369,12 @@ def run_gradio(args, model=None, device=None, tokenizer=None):
|
|
| 366 |
with gr.Accordion("A note on model capability",open=True):
|
| 367 |
gr.Markdown(
|
| 368 |
"""
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
We suggest you try prompts that give the model a few sentences and then allow it to 'continue' the prompt, as these weaker models are more capable in this simpler language modeling setting.
|
| 374 |
Some examples include the opening paragraph of a wikipedia article, or the first few sentences of a story.
|
| 375 |
-
Longer prompts
|
| 376 |
"""
|
| 377 |
)
|
| 378 |
gr.Markdown(f"Language model: {args.model_name_or_path} {'(float16 mode)' if args.load_fp16 else ''}")
|
|
|
|
| 276 |
s=s.replace("green_fraction","Fraction of T in Greenlist")
|
| 277 |
s=s.replace("z_score","z-score")
|
| 278 |
s=s.replace("p_value","p value")
|
| 279 |
+
s=s.replace("prediction","Prediction")
|
| 280 |
+
s=s.replace("confidence","Confidence")
|
| 281 |
return s
|
| 282 |
|
| 283 |
def list_format_scores(score_dict, detection_threshold):
|
| 284 |
"""Format the detection metrics into a gradio dataframe input format"""
|
| 285 |
lst_2d = []
|
| 286 |
+
# lst_2d.append(["z-score threshold", f"{detection_threshold}"])
|
| 287 |
for k,v in score_dict.items():
|
| 288 |
if k=='green_fraction':
|
| 289 |
lst_2d.append([format_names(k), f"{v:.1%}"])
|
|
|
|
| 295 |
lst_2d.append([format_names(k), ("Watermarked" if v else "Human/Unwatermarked")])
|
| 296 |
else:
|
| 297 |
lst_2d.append([format_names(k), f"{v}"])
|
| 298 |
+
lst_2d.insert(-1,["z-score Threshold", f"{detection_threshold}"])
|
| 299 |
return lst_2d
|
| 300 |
|
| 301 |
def detect(input_text, args, device=None, tokenizer=None):
|
|
|
|
| 369 |
with gr.Accordion("A note on model capability",open=True):
|
| 370 |
gr.Markdown(
|
| 371 |
"""
|
| 372 |
+
This demo uses open-source language models that fit on a single GPU. These models are less powerful than proprietary commercial tools like ChatGPT, Claude, or Bard.
|
| 373 |
+
|
| 374 |
+
Importantly, we use a language model that is designed to "complete" your prompt, and not a model this is fine-tuned to follow instructions.
|
| 375 |
+
For best results, prompt the model with a few sentences that form the beginning of a paragraph, and then allow it to "continue" your paragraph.
|
|
|
|
| 376 |
Some examples include the opening paragraph of a wikipedia article, or the first few sentences of a story.
|
| 377 |
+
Longer prompts that end mid-sentence will result in more fluent generations.
|
| 378 |
"""
|
| 379 |
)
|
| 380 |
gr.Markdown(f"Language model: {args.model_name_or_path} {'(float16 mode)' if args.load_fp16 else ''}")
|