Spaces:
Runtime error
Runtime error
Commit
·
507fd5a
1
Parent(s):
a7d76f1
added inference api functionality
Browse files- demo_watermark.py +178 -46
- requirements.txt +2 -1
demo_watermark.py
CHANGED
|
@@ -32,6 +32,14 @@ from transformers import (AutoTokenizer,
|
|
| 32 |
|
| 33 |
from watermark_processor import WatermarkLogitsProcessor, WatermarkDetector
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
def str2bool(v):
|
| 36 |
"""Util function for user friendly boolean flag args"""
|
| 37 |
if isinstance(v, bool):
|
|
@@ -200,13 +208,69 @@ def load_model(args):
|
|
| 200 |
|
| 201 |
return model, tokenizer, device
|
| 202 |
|
| 203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
"""Instatiate the WatermarkLogitsProcessor according to the watermark parameters
|
| 205 |
and generate watermarked text by passing it to the generate method of the model
|
| 206 |
as a logits processor. """
|
| 207 |
|
| 208 |
print(f"Generating with {args}")
|
| 209 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
watermark_processor = WatermarkLogitsProcessor(vocab=list(tokenizer.get_vocab().values()),
|
| 211 |
gamma=args.gamma,
|
| 212 |
delta=args.delta,
|
|
@@ -235,16 +299,6 @@ def generate(prompt, args, model=None, device=None, tokenizer=None):
|
|
| 235 |
logits_processor=LogitsProcessorList([watermark_processor]),
|
| 236 |
**gen_kwargs
|
| 237 |
)
|
| 238 |
-
if args.prompt_max_length:
|
| 239 |
-
pass
|
| 240 |
-
elif hasattr(model.config,"max_position_embedding"):
|
| 241 |
-
args.prompt_max_length = model.config.max_position_embeddings-args.max_new_tokens
|
| 242 |
-
else:
|
| 243 |
-
args.prompt_max_length = 2048-args.max_new_tokens
|
| 244 |
-
|
| 245 |
-
tokd_input = tokenizer(prompt, return_tensors="pt", add_special_tokens=True, truncation=True, max_length=args.prompt_max_length).to(device)
|
| 246 |
-
truncation_warning = True if tokd_input["input_ids"].shape[-1] == args.prompt_max_length else False
|
| 247 |
-
redecoded_input = tokenizer.batch_decode(tokd_input["input_ids"], skip_special_tokens=True)[0]
|
| 248 |
|
| 249 |
torch.manual_seed(args.generation_seed)
|
| 250 |
output_without_watermark = generate_without_watermark(**tokd_input)
|
|
@@ -266,8 +320,9 @@ def generate(prompt, args, model=None, device=None, tokenizer=None):
|
|
| 266 |
int(truncation_warning),
|
| 267 |
decoded_output_without_watermark,
|
| 268 |
decoded_output_with_watermark,
|
| 269 |
-
args
|
| 270 |
-
|
|
|
|
| 271 |
|
| 272 |
def format_names(s):
|
| 273 |
"""Format names for the gradio demo interface"""
|
|
@@ -301,9 +356,12 @@ def list_format_scores(score_dict, detection_threshold):
|
|
| 301 |
lst_2d.insert(-1,["z-score Threshold", f"{detection_threshold}"])
|
| 302 |
return lst_2d
|
| 303 |
|
| 304 |
-
def detect(input_text, args,
|
| 305 |
"""Instantiate the WatermarkDetection object and call detect on
|
| 306 |
the input text returning the scores and outcome of the test"""
|
|
|
|
|
|
|
|
|
|
| 307 |
watermark_detector = WatermarkDetector(vocab=list(tokenizer.get_vocab().values()),
|
| 308 |
gamma=args.gamma,
|
| 309 |
seeding_scheme=args.seeding_scheme,
|
|
@@ -313,20 +371,29 @@ def detect(input_text, args, device=None, tokenizer=None):
|
|
| 313 |
normalizers=args.normalizers,
|
| 314 |
ignore_repeated_bigrams=args.ignore_repeated_bigrams,
|
| 315 |
select_green_tokens=args.select_green_tokens)
|
| 316 |
-
if len(input_text)-1 > watermark_detector.min_prefix_len:
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
else:
|
| 321 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 322 |
output = [["Error","string too short to compute metrics"]]
|
| 323 |
output += [["",""] for _ in range(6)]
|
| 324 |
-
return output, args
|
| 325 |
|
| 326 |
def run_gradio(args, model=None, device=None, tokenizer=None):
|
| 327 |
"""Define and launch the gradio demo interface"""
|
| 328 |
-
generate_partial = partial(generate, model=model, device=device, tokenizer=tokenizer)
|
| 329 |
-
detect_partial = partial(detect, device=device, tokenizer=tokenizer)
|
|
|
|
|
|
|
| 330 |
|
| 331 |
with gr.Blocks() as demo:
|
| 332 |
# Top section, greeting and instructions
|
|
@@ -343,11 +410,20 @@ def run_gradio(args, model=None, device=None, tokenizer=None):
|
|
| 343 |
[](https://github.com/jwkirchenbauer/lm-watermarking)
|
| 344 |
"""
|
| 345 |
)
|
| 346 |
-
gr.Markdown(f"Language model: {args.model_name_or_path} {'(float16 mode)' if args.load_fp16 else ''}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 347 |
|
| 348 |
# Construct state for parameters, define updates and toggles
|
| 349 |
default_prompt = args.__dict__.pop("default_prompt")
|
| 350 |
session_args = gr.State(value=args)
|
|
|
|
|
|
|
| 351 |
|
| 352 |
with gr.Tab("Welcome"):
|
| 353 |
with gr.Row():
|
|
@@ -448,7 +524,7 @@ def run_gradio(args, model=None, device=None, tokenizer=None):
|
|
| 448 |
with gr.Row():
|
| 449 |
generation_seed = gr.Number(label="Generation Seed",value=args.generation_seed, interactive=True)
|
| 450 |
with gr.Row():
|
| 451 |
-
n_beams = gr.Dropdown(label="Number of Beams",choices=list(range(1,11,1)), value=args.n_beams, visible=(not args.use_sampling))
|
| 452 |
with gr.Row():
|
| 453 |
max_new_tokens = gr.Slider(label="Max Generated Tokens", minimum=10, maximum=1000, step=10, value=args.max_new_tokens)
|
| 454 |
|
|
@@ -561,18 +637,19 @@ def run_gradio(args, model=None, device=None, tokenizer=None):
|
|
| 561 |
""")
|
| 562 |
|
| 563 |
# Register main generation tab click, outputing generations as well as a the encoded+redecoded+potentially truncated prompt and flag
|
| 564 |
-
generate_btn.click(fn=generate_partial, inputs=[prompt,session_args], outputs=[redecoded_input, truncation_warning, output_without_watermark, output_with_watermark,session_args])
|
| 565 |
# Show truncated version of prompt if truncation occurred
|
| 566 |
redecoded_input.change(fn=truncate_prompt, inputs=[redecoded_input,truncation_warning,prompt,session_args], outputs=[prompt,session_args])
|
| 567 |
# Call detection when the outputs (of the generate function) are updated
|
| 568 |
-
output_without_watermark.change(fn=detect_partial, inputs=[output_without_watermark,session_args], outputs=[without_watermark_detection_result,session_args])
|
| 569 |
-
output_with_watermark.change(fn=detect_partial, inputs=[output_with_watermark,session_args], outputs=[with_watermark_detection_result,session_args])
|
| 570 |
# Register main detection tab click
|
| 571 |
-
# detect_btn.click(fn=detect_partial, inputs=[detection_input,session_args], outputs=[detection_result, session_args])
|
| 572 |
-
detect_btn.click(fn=detect_partial, inputs=[detection_input,session_args], outputs=[detection_result, session_args], api_name="detection")
|
| 573 |
|
| 574 |
# State management logic
|
| 575 |
# update callbacks that change the state dict
|
|
|
|
| 576 |
def update_sampling_temp(session_state, value): session_state.sampling_temp = float(value); return session_state
|
| 577 |
def update_generation_seed(session_state, value): session_state.generation_seed = int(value); return session_state
|
| 578 |
def update_gamma(session_state, value): session_state.gamma = float(value); return session_state
|
|
@@ -594,17 +671,56 @@ def run_gradio(args, model=None, device=None, tokenizer=None):
|
|
| 594 |
return gr.update(visible=False)
|
| 595 |
elif value == "greedy":
|
| 596 |
return gr.update(visible=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 597 |
def update_n_beams(session_state, value): session_state.n_beams = value; return session_state
|
| 598 |
def update_max_new_tokens(session_state, value): session_state.max_new_tokens = int(value); return session_state
|
| 599 |
def update_ignore_repeated_bigrams(session_state, value): session_state.ignore_repeated_bigrams = value; return session_state
|
| 600 |
def update_normalizers(session_state, value): session_state.normalizers = value; return session_state
|
| 601 |
def update_seed_separately(session_state, value): session_state.seed_separately = value; return session_state
|
| 602 |
def update_select_green_tokens(session_state, value): session_state.select_green_tokens = value; return session_state
|
| 603 |
-
|
|
|
|
| 604 |
decoding.change(toggle_sampling_vis,inputs=[decoding], outputs=[sampling_temp])
|
| 605 |
decoding.change(toggle_sampling_vis,inputs=[decoding], outputs=[generation_seed])
|
| 606 |
decoding.change(toggle_sampling_vis_inv,inputs=[decoding], outputs=[n_beams])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 607 |
# registering all state update callbacks
|
|
|
|
| 608 |
decoding.change(update_decoding,inputs=[session_args, decoding], outputs=[session_args])
|
| 609 |
sampling_temp.change(update_sampling_temp,inputs=[session_args, sampling_temp], outputs=[session_args])
|
| 610 |
generation_seed.change(update_generation_seed,inputs=[session_args, generation_seed], outputs=[session_args])
|
|
@@ -620,27 +736,29 @@ def run_gradio(args, model=None, device=None, tokenizer=None):
|
|
| 620 |
# register additional callback on button clicks that updates the shown parameters window
|
| 621 |
generate_btn.click(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
|
| 622 |
detect_btn.click(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
|
|
|
|
| 623 |
# When the parameters change, display the update and fire detection, since some detection params dont change the model output.
|
|
|
|
| 624 |
gamma.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
|
| 625 |
-
gamma.change(fn=detect_partial, inputs=[output_without_watermark,session_args], outputs=[without_watermark_detection_result,session_args])
|
| 626 |
-
gamma.change(fn=detect_partial, inputs=[output_with_watermark,session_args], outputs=[with_watermark_detection_result,session_args])
|
| 627 |
-
gamma.change(fn=detect_partial, inputs=[detection_input,session_args], outputs=[detection_result,session_args])
|
| 628 |
detection_z_threshold.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
|
| 629 |
-
detection_z_threshold.change(fn=detect_partial, inputs=[output_without_watermark,session_args], outputs=[without_watermark_detection_result,session_args])
|
| 630 |
-
detection_z_threshold.change(fn=detect_partial, inputs=[output_with_watermark,session_args], outputs=[with_watermark_detection_result,session_args])
|
| 631 |
-
detection_z_threshold.change(fn=detect_partial, inputs=[detection_input,session_args], outputs=[detection_result,session_args])
|
| 632 |
ignore_repeated_bigrams.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
|
| 633 |
-
ignore_repeated_bigrams.change(fn=detect_partial, inputs=[output_without_watermark,session_args], outputs=[without_watermark_detection_result,session_args])
|
| 634 |
-
ignore_repeated_bigrams.change(fn=detect_partial, inputs=[output_with_watermark,session_args], outputs=[with_watermark_detection_result,session_args])
|
| 635 |
-
ignore_repeated_bigrams.change(fn=detect_partial, inputs=[detection_input,session_args], outputs=[detection_result,session_args])
|
| 636 |
normalizers.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
|
| 637 |
-
normalizers.change(fn=detect_partial, inputs=[output_without_watermark,session_args], outputs=[without_watermark_detection_result,session_args])
|
| 638 |
-
normalizers.change(fn=detect_partial, inputs=[output_with_watermark,session_args], outputs=[with_watermark_detection_result,session_args])
|
| 639 |
-
normalizers.change(fn=detect_partial, inputs=[detection_input,session_args], outputs=[detection_result,session_args])
|
| 640 |
select_green_tokens.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
|
| 641 |
-
select_green_tokens.change(fn=detect_partial, inputs=[output_without_watermark,session_args], outputs=[without_watermark_detection_result,session_args])
|
| 642 |
-
select_green_tokens.change(fn=detect_partial, inputs=[output_with_watermark,session_args], outputs=[with_watermark_detection_result,session_args])
|
| 643 |
-
select_green_tokens.change(fn=detect_partial, inputs=[detection_input,session_args], outputs=[detection_result,session_args])
|
| 644 |
|
| 645 |
|
| 646 |
demo.queue(concurrency_count=3)
|
|
@@ -691,9 +809,23 @@ def main(args):
|
|
| 691 |
"on their body and head. The diamondback terrapin has large webbed "
|
| 692 |
"feet.[9] The species is"
|
| 693 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 694 |
|
| 695 |
args.default_prompt = input_text
|
| 696 |
|
|
|
|
| 697 |
# Generate and detect, report to stdout
|
| 698 |
if not args.skip_model_load:
|
| 699 |
|
|
@@ -702,7 +834,7 @@ def main(args):
|
|
| 702 |
print("Prompt:")
|
| 703 |
print(input_text)
|
| 704 |
|
| 705 |
-
_, _, decoded_output_without_watermark, decoded_output_with_watermark, _ = generate(input_text,
|
| 706 |
args,
|
| 707 |
model=model,
|
| 708 |
device=device,
|
|
|
|
| 32 |
|
| 33 |
from watermark_processor import WatermarkLogitsProcessor, WatermarkDetector
|
| 34 |
|
| 35 |
+
# FIXME correct lengths for all models
|
| 36 |
+
API_MODEL_MAP = {
|
| 37 |
+
"bigscience/bloomz" : {"max_length": 2048, "gamma": 0.5, "delta": 2.0},
|
| 38 |
+
"google/flan-ul2" : {"max_length": 2048, "gamma": 0.5, "delta": 2.0},
|
| 39 |
+
"google/flan-t5-xxl" : {"max_length": 2048, "gamma": 0.5, "delta": 2.0},
|
| 40 |
+
"EleutherAI/gpt-neox-20b" : {"max_length": 2048, "gamma": 0.5, "delta": 2.0},
|
| 41 |
+
}
|
| 42 |
+
|
| 43 |
def str2bool(v):
|
| 44 |
"""Util function for user friendly boolean flag args"""
|
| 45 |
if isinstance(v, bool):
|
|
|
|
| 208 |
|
| 209 |
return model, tokenizer, device
|
| 210 |
|
| 211 |
+
|
| 212 |
+
from text_generation import InferenceAPIClient
|
| 213 |
+
def generate_with_api(prompt, args):
|
| 214 |
+
hf_api_key = os.environ.get("HF_API_KEY")
|
| 215 |
+
if hf_api_key is None:
|
| 216 |
+
raise ValueError("HF_API_KEY environment variable not set, cannot use HF API to generate text.")
|
| 217 |
+
|
| 218 |
+
client = InferenceAPIClient(args.model_name_or_path, token=hf_api_key)
|
| 219 |
+
|
| 220 |
+
assert args.n_beams == 1, "HF API models do not support beam search."
|
| 221 |
+
generation_params = {
|
| 222 |
+
"max_new_tokens": args.max_new_tokens,
|
| 223 |
+
"do_sample": args.use_sampling,
|
| 224 |
+
}
|
| 225 |
+
if args.use_sampling:
|
| 226 |
+
generation_params["temperature"] = args.sampling_temp
|
| 227 |
+
generation_params["seed"] = args.generation_seed
|
| 228 |
+
|
| 229 |
+
generation_params["watermarking"] = False
|
| 230 |
+
output = client.generate(prompt, **generation_params)
|
| 231 |
+
output_text_without_watermark = output.generated_text
|
| 232 |
+
|
| 233 |
+
generation_params["watermarking"] = True
|
| 234 |
+
output = client.generate(prompt, **generation_params)
|
| 235 |
+
output_text_with_watermark = output.generated_text
|
| 236 |
+
|
| 237 |
+
return (output_text_without_watermark,
|
| 238 |
+
output_text_with_watermark)
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
def generate(prompt, args, tokenizer, model=None, device=None):
|
| 242 |
"""Instatiate the WatermarkLogitsProcessor according to the watermark parameters
|
| 243 |
and generate watermarked text by passing it to the generate method of the model
|
| 244 |
as a logits processor. """
|
| 245 |
|
| 246 |
print(f"Generating with {args}")
|
| 247 |
|
| 248 |
+
# This applies to both the local and API model scenarios
|
| 249 |
+
if args.prompt_max_length:
|
| 250 |
+
pass
|
| 251 |
+
elif args.model_name_or_path in API_MODEL_MAP:
|
| 252 |
+
args.prompt_max_length = API_MODEL_MAP[args.model_name_or_path]["max_length"]-args.max_new_tokens
|
| 253 |
+
elif hasattr(model.config,"max_position_embedding"):
|
| 254 |
+
args.prompt_max_length = model.config.max_position_embeddings-args.max_new_tokens
|
| 255 |
+
else:
|
| 256 |
+
args.prompt_max_length = 2048-args.max_new_tokens
|
| 257 |
+
|
| 258 |
+
tokd_input = tokenizer(prompt, return_tensors="pt", add_special_tokens=True, truncation=True, max_length=args.prompt_max_length).to(device)
|
| 259 |
+
truncation_warning = True if tokd_input["input_ids"].shape[-1] == args.prompt_max_length else False
|
| 260 |
+
redecoded_input = tokenizer.batch_decode(tokd_input["input_ids"], skip_special_tokens=True)[0]
|
| 261 |
+
|
| 262 |
+
if args.model_name_or_path in API_MODEL_MAP:
|
| 263 |
+
api_outputs = generate_with_api(prompt, args)
|
| 264 |
+
decoded_output_without_watermark = api_outputs[0]
|
| 265 |
+
decoded_output_with_watermark = api_outputs[1]
|
| 266 |
+
return (redecoded_input,
|
| 267 |
+
int(truncation_warning),
|
| 268 |
+
decoded_output_without_watermark,
|
| 269 |
+
decoded_output_with_watermark,
|
| 270 |
+
args,
|
| 271 |
+
tokenizer)
|
| 272 |
+
|
| 273 |
+
|
| 274 |
watermark_processor = WatermarkLogitsProcessor(vocab=list(tokenizer.get_vocab().values()),
|
| 275 |
gamma=args.gamma,
|
| 276 |
delta=args.delta,
|
|
|
|
| 299 |
logits_processor=LogitsProcessorList([watermark_processor]),
|
| 300 |
**gen_kwargs
|
| 301 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 302 |
|
| 303 |
torch.manual_seed(args.generation_seed)
|
| 304 |
output_without_watermark = generate_without_watermark(**tokd_input)
|
|
|
|
| 320 |
int(truncation_warning),
|
| 321 |
decoded_output_without_watermark,
|
| 322 |
decoded_output_with_watermark,
|
| 323 |
+
args,
|
| 324 |
+
tokenizer)
|
| 325 |
+
|
| 326 |
|
| 327 |
def format_names(s):
|
| 328 |
"""Format names for the gradio demo interface"""
|
|
|
|
| 356 |
lst_2d.insert(-1,["z-score Threshold", f"{detection_threshold}"])
|
| 357 |
return lst_2d
|
| 358 |
|
| 359 |
+
def detect(input_text, args, tokenizer, device=None):
|
| 360 |
"""Instantiate the WatermarkDetection object and call detect on
|
| 361 |
the input text returning the scores and outcome of the test"""
|
| 362 |
+
print(f"Detecting with {args}")
|
| 363 |
+
print(f"Detection Tokenizer: {type(tokenizer)}")
|
| 364 |
+
|
| 365 |
watermark_detector = WatermarkDetector(vocab=list(tokenizer.get_vocab().values()),
|
| 366 |
gamma=args.gamma,
|
| 367 |
seeding_scheme=args.seeding_scheme,
|
|
|
|
| 371 |
normalizers=args.normalizers,
|
| 372 |
ignore_repeated_bigrams=args.ignore_repeated_bigrams,
|
| 373 |
select_green_tokens=args.select_green_tokens)
|
| 374 |
+
# if len(input_text)-1 > watermark_detector.min_prefix_len:
|
| 375 |
+
error = False
|
| 376 |
+
if input_text == "":
|
| 377 |
+
error = True
|
| 378 |
else:
|
| 379 |
+
try:
|
| 380 |
+
score_dict = watermark_detector.detect(input_text)
|
| 381 |
+
# output = str_format_scores(score_dict, watermark_detector.z_threshold)
|
| 382 |
+
output = list_format_scores(score_dict, watermark_detector.z_threshold)
|
| 383 |
+
except ValueError as e:
|
| 384 |
+
print(e)
|
| 385 |
+
error = True
|
| 386 |
+
if error:
|
| 387 |
output = [["Error","string too short to compute metrics"]]
|
| 388 |
output += [["",""] for _ in range(6)]
|
| 389 |
+
return output, args, tokenizer
|
| 390 |
|
| 391 |
def run_gradio(args, model=None, device=None, tokenizer=None):
|
| 392 |
"""Define and launch the gradio demo interface"""
|
| 393 |
+
# generate_partial = partial(generate, model=model, device=device, tokenizer=tokenizer)
|
| 394 |
+
# detect_partial = partial(detect, device=device, tokenizer=tokenizer)
|
| 395 |
+
generate_partial = partial(generate, model=model, device=device)
|
| 396 |
+
detect_partial = partial(detect, device=device)
|
| 397 |
|
| 398 |
with gr.Blocks() as demo:
|
| 399 |
# Top section, greeting and instructions
|
|
|
|
| 410 |
[](https://github.com/jwkirchenbauer/lm-watermarking)
|
| 411 |
"""
|
| 412 |
)
|
| 413 |
+
# gr.Markdown(f"Language model: {args.model_name_or_path} {'(float16 mode)' if args.load_fp16 else ''}")
|
| 414 |
+
# if model_name_or_path at startup not one of the API models then add to dropdown
|
| 415 |
+
all_models = sorted(list(set(list(API_MODEL_MAP.keys())+[args.model_name_or_path])))
|
| 416 |
+
model_selector = gr.Dropdown(
|
| 417 |
+
all_models,
|
| 418 |
+
value=args.model_name_or_path,
|
| 419 |
+
label="Language Model",
|
| 420 |
+
)
|
| 421 |
|
| 422 |
# Construct state for parameters, define updates and toggles
|
| 423 |
default_prompt = args.__dict__.pop("default_prompt")
|
| 424 |
session_args = gr.State(value=args)
|
| 425 |
+
# note that state obj automatically calls value if it's a callable, want to avoid calling tokenizer at startup
|
| 426 |
+
session_tokenizer = gr.State(value=lambda : tokenizer)
|
| 427 |
|
| 428 |
with gr.Tab("Welcome"):
|
| 429 |
with gr.Row():
|
|
|
|
| 524 |
with gr.Row():
|
| 525 |
generation_seed = gr.Number(label="Generation Seed",value=args.generation_seed, interactive=True)
|
| 526 |
with gr.Row():
|
| 527 |
+
n_beams = gr.Dropdown(label="Number of Beams",choices=list(range(1,11,1)), value=args.n_beams, visible=((not args.use_sampling) and (not args.model_name_or_path in API_MODEL_MAP)))
|
| 528 |
with gr.Row():
|
| 529 |
max_new_tokens = gr.Slider(label="Max Generated Tokens", minimum=10, maximum=1000, step=10, value=args.max_new_tokens)
|
| 530 |
|
|
|
|
| 637 |
""")
|
| 638 |
|
| 639 |
# Register main generation tab click, outputing generations as well as a the encoded+redecoded+potentially truncated prompt and flag
|
| 640 |
+
generate_btn.click(fn=generate_partial, inputs=[prompt,session_args,session_tokenizer], outputs=[redecoded_input, truncation_warning, output_without_watermark, output_with_watermark,session_args,session_tokenizer])
|
| 641 |
# Show truncated version of prompt if truncation occurred
|
| 642 |
redecoded_input.change(fn=truncate_prompt, inputs=[redecoded_input,truncation_warning,prompt,session_args], outputs=[prompt,session_args])
|
| 643 |
# Call detection when the outputs (of the generate function) are updated
|
| 644 |
+
output_without_watermark.change(fn=detect_partial, inputs=[output_without_watermark,session_args,session_tokenizer], outputs=[without_watermark_detection_result,session_args,session_tokenizer])
|
| 645 |
+
output_with_watermark.change(fn=detect_partial, inputs=[output_with_watermark,session_args,session_tokenizer], outputs=[with_watermark_detection_result,session_args,session_tokenizer])
|
| 646 |
# Register main detection tab click
|
| 647 |
+
# detect_btn.click(fn=detect_partial, inputs=[detection_input,session_args,session_tokenizer], outputs=[detection_result, session_args,session_tokenizer])
|
| 648 |
+
detect_btn.click(fn=detect_partial, inputs=[detection_input,session_args,session_tokenizer], outputs=[detection_result, session_args,session_tokenizer], api_name="detection")
|
| 649 |
|
| 650 |
# State management logic
|
| 651 |
# update callbacks that change the state dict
|
| 652 |
+
def update_model(session_state, value): session_state.model_name_or_path = value; return session_state
|
| 653 |
def update_sampling_temp(session_state, value): session_state.sampling_temp = float(value); return session_state
|
| 654 |
def update_generation_seed(session_state, value): session_state.generation_seed = int(value); return session_state
|
| 655 |
def update_gamma(session_state, value): session_state.gamma = float(value); return session_state
|
|
|
|
| 671 |
return gr.update(visible=False)
|
| 672 |
elif value == "greedy":
|
| 673 |
return gr.update(visible=True)
|
| 674 |
+
# if model name is in the list of api models, set the num beams parameter to 1 and hide n_beams
|
| 675 |
+
def toggle_vis_for_api_model(value):
|
| 676 |
+
if value in API_MODEL_MAP:
|
| 677 |
+
return gr.update(visible=False)
|
| 678 |
+
else:
|
| 679 |
+
return gr.update(visible=True)
|
| 680 |
+
def toggle_beams_for_api_model(value, orig_n_beams):
|
| 681 |
+
if value in API_MODEL_MAP:
|
| 682 |
+
return gr.update(value=1)
|
| 683 |
+
else:
|
| 684 |
+
return gr.update(value=orig_n_beams)
|
| 685 |
+
# if model name is in the list of api models, set the interactive parameter to false
|
| 686 |
+
def toggle_interactive_for_api_model(value):
|
| 687 |
+
if value in API_MODEL_MAP:
|
| 688 |
+
return gr.update(interactive=False)
|
| 689 |
+
else:
|
| 690 |
+
return gr.update(interactive=True)
|
| 691 |
+
# if model name is in the list of api models, set gamma and delta based on API map
|
| 692 |
+
def toggle_gamma_for_api_model(value, orig_gamma):
|
| 693 |
+
if value in API_MODEL_MAP:
|
| 694 |
+
return gr.update(value=API_MODEL_MAP[value]["gamma"])
|
| 695 |
+
else:
|
| 696 |
+
return gr.update(value=orig_gamma)
|
| 697 |
+
def toggle_delta_for_api_model(value, orig_delta):
|
| 698 |
+
if value in API_MODEL_MAP:
|
| 699 |
+
return gr.update(value=API_MODEL_MAP[value]["delta"])
|
| 700 |
+
else:
|
| 701 |
+
return gr.update(value=orig_delta)
|
| 702 |
+
|
| 703 |
def update_n_beams(session_state, value): session_state.n_beams = value; return session_state
|
| 704 |
def update_max_new_tokens(session_state, value): session_state.max_new_tokens = int(value); return session_state
|
| 705 |
def update_ignore_repeated_bigrams(session_state, value): session_state.ignore_repeated_bigrams = value; return session_state
|
| 706 |
def update_normalizers(session_state, value): session_state.normalizers = value; return session_state
|
| 707 |
def update_seed_separately(session_state, value): session_state.seed_separately = value; return session_state
|
| 708 |
def update_select_green_tokens(session_state, value): session_state.select_green_tokens = value; return session_state
|
| 709 |
+
def update_tokenizer(model_name_or_path): return AutoTokenizer.from_pretrained(model_name_or_path)
|
| 710 |
+
# registering callbacks for toggling the visibilty of certain parameters based on the values of others
|
| 711 |
decoding.change(toggle_sampling_vis,inputs=[decoding], outputs=[sampling_temp])
|
| 712 |
decoding.change(toggle_sampling_vis,inputs=[decoding], outputs=[generation_seed])
|
| 713 |
decoding.change(toggle_sampling_vis_inv,inputs=[decoding], outputs=[n_beams])
|
| 714 |
+
model_selector.change(toggle_vis_for_api_model,inputs=[model_selector], outputs=[n_beams])
|
| 715 |
+
decoding.change(toggle_vis_for_api_model,inputs=[model_selector], outputs=[n_beams])
|
| 716 |
+
model_selector.change(toggle_beams_for_api_model,inputs=[model_selector,n_beams], outputs=[n_beams])
|
| 717 |
+
model_selector.change(toggle_interactive_for_api_model,inputs=[model_selector], outputs=[gamma])
|
| 718 |
+
model_selector.change(toggle_interactive_for_api_model,inputs=[model_selector], outputs=[delta])
|
| 719 |
+
model_selector.change(toggle_gamma_for_api_model,inputs=[model_selector,gamma], outputs=[gamma])
|
| 720 |
+
model_selector.change(toggle_delta_for_api_model,inputs=[model_selector,delta], outputs=[delta])
|
| 721 |
+
model_selector.change(update_tokenizer,inputs=[model_selector], outputs=[session_tokenizer])
|
| 722 |
# registering all state update callbacks
|
| 723 |
+
model_selector.change(update_model,inputs=[session_args, model_selector], outputs=[session_args])
|
| 724 |
decoding.change(update_decoding,inputs=[session_args, decoding], outputs=[session_args])
|
| 725 |
sampling_temp.change(update_sampling_temp,inputs=[session_args, sampling_temp], outputs=[session_args])
|
| 726 |
generation_seed.change(update_generation_seed,inputs=[session_args, generation_seed], outputs=[session_args])
|
|
|
|
| 736 |
# register additional callback on button clicks that updates the shown parameters window
|
| 737 |
generate_btn.click(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
|
| 738 |
detect_btn.click(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
|
| 739 |
+
model_selector.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
|
| 740 |
# When the parameters change, display the update and fire detection, since some detection params dont change the model output.
|
| 741 |
+
delta.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
|
| 742 |
gamma.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
|
| 743 |
+
gamma.change(fn=detect_partial, inputs=[output_without_watermark,session_args,session_tokenizer], outputs=[without_watermark_detection_result,session_args,session_tokenizer])
|
| 744 |
+
gamma.change(fn=detect_partial, inputs=[output_with_watermark,session_args,session_tokenizer], outputs=[with_watermark_detection_result,session_args,session_tokenizer])
|
| 745 |
+
gamma.change(fn=detect_partial, inputs=[detection_input,session_args,session_tokenizer], outputs=[detection_result,session_args,session_tokenizer])
|
| 746 |
detection_z_threshold.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
|
| 747 |
+
detection_z_threshold.change(fn=detect_partial, inputs=[output_without_watermark,session_args,session_tokenizer], outputs=[without_watermark_detection_result,session_args,session_tokenizer])
|
| 748 |
+
detection_z_threshold.change(fn=detect_partial, inputs=[output_with_watermark,session_args,session_tokenizer], outputs=[with_watermark_detection_result,session_args,session_tokenizer])
|
| 749 |
+
detection_z_threshold.change(fn=detect_partial, inputs=[detection_input,session_args,session_tokenizer], outputs=[detection_result,session_args,session_tokenizer])
|
| 750 |
ignore_repeated_bigrams.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
|
| 751 |
+
ignore_repeated_bigrams.change(fn=detect_partial, inputs=[output_without_watermark,session_args,session_tokenizer], outputs=[without_watermark_detection_result,session_args,session_tokenizer])
|
| 752 |
+
ignore_repeated_bigrams.change(fn=detect_partial, inputs=[output_with_watermark,session_args,session_tokenizer], outputs=[with_watermark_detection_result,session_args,session_tokenizer])
|
| 753 |
+
ignore_repeated_bigrams.change(fn=detect_partial, inputs=[detection_input,session_args,session_tokenizer], outputs=[detection_result,session_args,session_tokenizer])
|
| 754 |
normalizers.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
|
| 755 |
+
normalizers.change(fn=detect_partial, inputs=[output_without_watermark,session_args,session_tokenizer], outputs=[without_watermark_detection_result,session_args,session_tokenizer])
|
| 756 |
+
normalizers.change(fn=detect_partial, inputs=[output_with_watermark,session_args,session_tokenizer], outputs=[with_watermark_detection_result,session_args,session_tokenizer])
|
| 757 |
+
normalizers.change(fn=detect_partial, inputs=[detection_input,session_args,session_tokenizer], outputs=[detection_result,session_args,session_tokenizer])
|
| 758 |
select_green_tokens.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
|
| 759 |
+
select_green_tokens.change(fn=detect_partial, inputs=[output_without_watermark,session_args,session_tokenizer], outputs=[without_watermark_detection_result,session_args,session_tokenizer])
|
| 760 |
+
select_green_tokens.change(fn=detect_partial, inputs=[output_with_watermark,session_args,session_tokenizer], outputs=[with_watermark_detection_result,session_args,session_tokenizer])
|
| 761 |
+
select_green_tokens.change(fn=detect_partial, inputs=[detection_input,session_args,session_tokenizer], outputs=[detection_result,session_args,session_tokenizer])
|
| 762 |
|
| 763 |
|
| 764 |
demo.queue(concurrency_count=3)
|
|
|
|
| 809 |
"on their body and head. The diamondback terrapin has large webbed "
|
| 810 |
"feet.[9] The species is"
|
| 811 |
)
|
| 812 |
+
|
| 813 |
+
# teaser example
|
| 814 |
+
# input_text = (
|
| 815 |
+
# "In this work, we study watermarking of language model output. "
|
| 816 |
+
# "A watermark is a hidden pattern in text that is imperceptible to humans, "
|
| 817 |
+
# "while making the text algorithmically identifiable as synthetic. "
|
| 818 |
+
# "We propose an efficient watermark that makes synthetic text detectable "
|
| 819 |
+
# "from short spans of tokens (as few as 25 words), while false-positives "
|
| 820 |
+
# "(where human text is marked as machine-generated) are statistically improbable. "
|
| 821 |
+
# "The watermark detection algorithm can be made public, enabling third parties "
|
| 822 |
+
# "(e.g., social media platforms) to run it themselves, or it can be kept private "
|
| 823 |
+
# "and run behind an API. We seek a watermark with the following properties:\n"
|
| 824 |
+
# )
|
| 825 |
|
| 826 |
args.default_prompt = input_text
|
| 827 |
|
| 828 |
+
|
| 829 |
# Generate and detect, report to stdout
|
| 830 |
if not args.skip_model_load:
|
| 831 |
|
|
|
|
| 834 |
print("Prompt:")
|
| 835 |
print(input_text)
|
| 836 |
|
| 837 |
+
_, _, decoded_output_without_watermark, decoded_output_with_watermark, _, _ = generate(input_text,
|
| 838 |
args,
|
| 839 |
model=model,
|
| 840 |
device=device,
|
requirements.txt
CHANGED
|
@@ -5,4 +5,5 @@ scipy
|
|
| 5 |
torch
|
| 6 |
transformers
|
| 7 |
tokenizers
|
| 8 |
-
accelerate
|
|
|
|
|
|
| 5 |
torch
|
| 6 |
transformers
|
| 7 |
tokenizers
|
| 8 |
+
accelerate
|
| 9 |
+
text-generation
|