|
import gradio as gr |
|
import deepinv as dinv |
|
import torch |
|
import numpy as np |
|
import PIL.Image |
|
|
|
|
|
def pil_to_torch(image, ref_size=512): |
|
image = np.array(image) |
|
image = image.transpose((2, 0, 1)) |
|
image = torch.tensor(image).float() / 255 |
|
image = image.unsqueeze(0) |
|
|
|
if ref_size == 256: |
|
size = (ref_size, ref_size) |
|
elif image.shape[2] > image.shape[3]: |
|
size = (ref_size, ref_size * image.shape[3]//image.shape[2]) |
|
else: |
|
size = (ref_size * image.shape[2]//image.shape[3], ref_size) |
|
|
|
image = torch.nn.functional.interpolate(image, size=size, mode='bilinear') |
|
return image |
|
|
|
|
|
def torch_to_pil(image): |
|
image = image.squeeze(0).cpu().detach().numpy() |
|
image = image.transpose((1, 2, 0)) |
|
image = (np.clip(image, 0, 1) * 255).astype(np.uint8) |
|
image = PIL.Image.fromarray(image) |
|
return image |
|
|
|
|
|
def image_mod(image, noise_level, denoiser): |
|
image = pil_to_torch(image, ref_size=256 if denoiser == 'DiffUNet' else 512) |
|
if denoiser == 'DnCNN': |
|
den = dinv.models.DnCNN() |
|
sigma0 = 2/255 |
|
denoiser = lambda x, sigma: den(x*sigma0/sigma)*sigma/sigma0 |
|
elif denoiser == 'MedianFilter': |
|
denoiser = dinv.models.MedianFilter(kernel_size=5) |
|
elif denoiser == 'BM3D': |
|
denoiser = dinv.models.BM3D() |
|
elif denoiser == 'TV': |
|
denoiser = dinv.models.TVDenoiser() |
|
elif denoiser == 'TGV': |
|
denoiser = dinv.models.TGVDenoiser() |
|
elif denoiser == 'Wavelets': |
|
denoiser = dinv.models.WaveletPrior() |
|
elif denoiser == 'DiffUNet': |
|
denoiser = dinv.models.DiffUNet() |
|
elif denoiser == 'DRUNet': |
|
denoiser = dinv.models.DRUNet() |
|
else: |
|
raise ValueError("Invalid denoiser") |
|
noisy = image + torch.randn_like(image) * noise_level |
|
estimated = denoiser(noisy, noise_level) |
|
return torch_to_pil(noisy), torch_to_pil(estimated) |
|
|
|
|
|
input_image = gr.Image(label='Input Image') |
|
output_images = gr.Image(label='Denoised Image') |
|
noise_image = gr.Image(label='Noisy Image') |
|
input_image_output = gr.Image(label='Input Image') |
|
|
|
noise_levels = gr.Dropdown(choices=[0.05, 0.1, 0.2, 0.3, 0.5, 1], value=0.1, label='Noise Level') |
|
|
|
denoiser = gr.Dropdown(choices=['DnCNN', 'DRUNet', 'DiffUNet', 'BM3D', 'MedianFilter', 'TV', 'TGV', 'Wavelets'], value='DRUNet', label='Denoiser') |
|
|
|
demo = gr.Interface( |
|
image_mod, |
|
inputs=[input_image, noise_levels, denoiser], |
|
examples=[['https://upload.wikimedia.org/wikipedia/commons/b/b4/Lionel-Messi-Argentina-2022-FIFA-World-Cup_%28cropped%29.jpg', 0.1, 'DRUNet']], |
|
outputs=[noise_image, output_images], |
|
title="Image Denoising with DeepInverse", |
|
description="Denoise an image using a variety of denoisers and noise levels using the deepinverse library (https://deepinv.github.io/). We only include lightweight models like DnCNN and MedianFilter as this example is intended to be run on a CPU. We also automatically resize the input image to 512 pixels to reduce the computation time. For more advanced models, please run the code locally.", |
|
) |
|
|
|
demo.launch() |