Update app.py
Browse files
app.py
CHANGED
|
@@ -1,64 +1,83 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
"""
|
| 7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
history: list[tuple[str, str]],
|
| 13 |
-
system_message,
|
| 14 |
-
max_tokens,
|
| 15 |
-
temperature,
|
| 16 |
-
top_p,
|
| 17 |
-
):
|
| 18 |
-
messages = [{"role": "system", "content": system_message}]
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
| 25 |
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
max_tokens=max_tokens,
|
| 33 |
-
stream=True,
|
| 34 |
-
temperature=temperature,
|
| 35 |
-
top_p=top_p,
|
| 36 |
-
):
|
| 37 |
-
token = message.choices[0].delta.content
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
minimum=0.1,
|
| 54 |
-
maximum=1.0,
|
| 55 |
-
value=0.95,
|
| 56 |
-
step=0.05,
|
| 57 |
-
label="Top-p (nucleus sampling)",
|
| 58 |
-
),
|
| 59 |
-
],
|
| 60 |
-
)
|
| 61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
-
if __name__ == "__main__":
|
| 64 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
import gradio as gr
|
| 3 |
+
import logging
|
| 4 |
+
import nest_asyncio
|
| 5 |
+
from typing import Any
|
| 6 |
+
from llama_index.tools.mcp import BasicMCPClient, McpToolSpec
|
| 7 |
|
| 8 |
+
# Logging Setup
|
| 9 |
+
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
# Default Hugging Face model and API URL
|
| 12 |
+
DEFAULT_HUGGINGFACE_MODEL = "Eric1227/dolphin-2.5-mixtral-8x7b-MLX-6bit" # Use your desired model
|
| 13 |
+
HUGGINGFACE_API_URL = "https://api-inference.huggingface.co/models/{model_name}"
|
| 14 |
+
API_KEY = "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" # Your Hugging Face API key
|
| 15 |
|
| 16 |
+
# Apply nest_asyncio to handle event loops in Jupyter (if using it)
|
| 17 |
+
nest_asyncio.apply()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
+
# Remote MCP Client Setup (Update with your remote MCP server URL)
|
| 20 |
+
REMOTE_MCP_URL = "http://your.remote.mcp.server/sse"
|
| 21 |
+
mcp_client = BasicMCPClient(REMOTE_MCP_URL)
|
| 22 |
+
mcp_tool = McpToolSpec(client=mcp_client)
|
|
|
|
| 23 |
|
| 24 |
+
# Function to call Hugging Face Inference API
|
| 25 |
+
def query_huggingface_api(prompt: str, model_name: str = DEFAULT_HUGGINGFACE_MODEL) -> str:
|
| 26 |
+
headers = {
|
| 27 |
+
"Authorization": f"Bearer {API_KEY}",
|
| 28 |
+
"Content-Type": "application/json"
|
| 29 |
+
}
|
| 30 |
|
| 31 |
+
payload = {
|
| 32 |
+
"inputs": prompt
|
| 33 |
+
}
|
| 34 |
|
| 35 |
+
response = requests.post(HUGGINGFACE_API_URL.format(model_name=model_name),
|
| 36 |
+
headers=headers, json=payload)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
+
if response.status_code == 200:
|
| 39 |
+
return response.json()[0]["generated_text"]
|
| 40 |
+
else:
|
| 41 |
+
logger.error(f"Error from Hugging Face API: {response.status_code}, {response.text}")
|
| 42 |
+
return "Error processing your request."
|
| 43 |
|
| 44 |
+
# Function to interact with MCP (for processing or augmenting responses)
|
| 45 |
+
def interact_with_mcp(input_text: str) -> str:
|
| 46 |
+
# Send input to MCP (modify as per your MCP interaction logic)
|
| 47 |
+
try:
|
| 48 |
+
response = mcp_client.query(input_text) # Assuming `query` method is used for MCP interaction
|
| 49 |
+
return response['response'] # Adjust based on your MCP response format
|
| 50 |
+
except Exception as e:
|
| 51 |
+
logger.error(f"Error interacting with MCP: {str(e)}")
|
| 52 |
+
return "MCP interaction failed."
|
| 53 |
|
| 54 |
+
# Create the function that Gradio will call for inference
|
| 55 |
+
def generate_response_with_mcp(prompt: str) -> str:
|
| 56 |
+
# First, interact with the Hugging Face model
|
| 57 |
+
model_response = query_huggingface_api(prompt)
|
| 58 |
+
|
| 59 |
+
# Then, send that response to the MCP system for additional processing
|
| 60 |
+
mcp_response = interact_with_mcp(model_response)
|
| 61 |
+
|
| 62 |
+
# Combine Hugging Face and MCP responses (or modify logic as needed)
|
| 63 |
+
return f"Model Response: {model_response}\n\nMCP Response: {mcp_response}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
+
# Set up Gradio interface
|
| 66 |
+
def launch_gradio_interface():
|
| 67 |
+
with gr.Blocks() as demo:
|
| 68 |
+
gr.Markdown("### Hugging Face Model + Remote MCP Integration")
|
| 69 |
+
|
| 70 |
+
with gr.Row():
|
| 71 |
+
prompt_input = gr.Textbox(label="Enter Your Prompt", placeholder="Type something here...")
|
| 72 |
+
output_text = gr.Textbox(label="Generated Response")
|
| 73 |
+
|
| 74 |
+
# Button to submit the prompt
|
| 75 |
+
submit_btn = gr.Button("Generate Response")
|
| 76 |
+
|
| 77 |
+
# Link the button action to the function
|
| 78 |
+
submit_btn.click(generate_response_with_mcp, inputs=prompt_input, outputs=output_text)
|
| 79 |
|
|
|
|
| 80 |
demo.launch()
|
| 81 |
+
|
| 82 |
+
if __name__ == "__main__":
|
| 83 |
+
launch_gradio_interface()
|