Spaces:
Build error
Build error
Commit
·
25153c7
1
Parent(s):
34c42cb
Upload 8 files
Browse files- Procfile +1 -0
- app.py +132 -0
- breast_cancer.csv +0 -0
- breast_clf.pkl +3 -0
- requirements.txt +6 -0
- setup.sh +13 -0
Procfile
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
web: sh setup.sh && streamlit run app.py
|
app.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import pickle
|
5 |
+
import base64
|
6 |
+
import seaborn as sns
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
|
9 |
+
st.write("""
|
10 |
+
# Breast Cancer Prediction App
|
11 |
+
|
12 |
+
|
13 |
+
Kanker payudara adalah kanker paling umum di kalangan wanita di dunia. Ini menyumbang 25% dari semua kasus kanker, dan mempengaruhi lebih dari 2,1 Juta orang pada tahun 2015 saja. Ini dimulai ketika sel-sel di payudara mulai tumbuh di luar kendali. Sel-sel ini biasanya membentuk tumor yang dapat dilihat melalui sinar-X atau dirasakan sebagai benjolan di area payudara.
|
14 |
+
|
15 |
+
Tantangan utama untuk mendeteksinya adalah bagaimana mengklasifikasikan tumor menjadi ganas (kanker) atau jinak (non kanker).
|
16 |
+
""")
|
17 |
+
|
18 |
+
url_dataset = f'<a href="breast_cancer.csv">Download Dataset CSV File</a>'
|
19 |
+
st.markdown(url_dataset, unsafe_allow_html=True)
|
20 |
+
|
21 |
+
def user_input_features() :
|
22 |
+
radius_mean = st.sidebar.slider('radius_mean', 6.981,28.11)
|
23 |
+
texture_mean = st.sidebar.slider('texture_mean', 9.71,39.28)
|
24 |
+
perimeter_mean = st.sidebar.slider('perimeter_mean', 43.79,188.5)
|
25 |
+
area_mean = st.sidebar.slider('area_mean', 143.5,2501.0)
|
26 |
+
smoothness_mean = st.sidebar.slider('smoothness_mean', 0.05263,0.1634)
|
27 |
+
compactness_mean = st.sidebar.slider('compactness_mean', 0.01938,0.3454)
|
28 |
+
concavity_mean = st.sidebar.slider('concavity_mean', 0.0,4268.0)
|
29 |
+
concave_points_mean = st.sidebar.slider('concave_points_mean', 0.0,0.2012)
|
30 |
+
symmetry_mean = st.sidebar.slider('symmetry_mean', 0.106,0.304)
|
31 |
+
fractal_dimension_mean = st.sidebar.slider('fractal_dimension_mean', 0.04996,0.09744)
|
32 |
+
radius_se = st.sidebar.slider('radius_se', 0.1115,2.873)
|
33 |
+
texture_se = st.sidebar.slider('texture_se', 0.3602,4.885)
|
34 |
+
perimeter_se = st.sidebar.slider('perimeter_se', 0.757,21.98)
|
35 |
+
area_se = st.sidebar.slider('area_se', 6.802,542.2)
|
36 |
+
smoothness_se = st.sidebar.slider('smoothness_se', 0.001713,0.03113)
|
37 |
+
compactness_se = st.sidebar.slider('compactness_se', 0.002252,0.1354)
|
38 |
+
concavity_se = st.sidebar.slider('concavity_se', 0.0,0.396)
|
39 |
+
concave_points_se = st.sidebar.slider('concave_points_se', 0.0,0.05279)
|
40 |
+
symmetry_se = st.sidebar.slider('symmetry_se', 0.007882,0.07895)
|
41 |
+
fractal_dimension_se = st.sidebar.slider('fractal_dimension_se', 0.000895,0.02984)
|
42 |
+
radius_worst = st.sidebar.slider('radius_worst', 7.93,36.04)
|
43 |
+
texture_worst = st.sidebar.slider('texture_worst', 12.02,49.54)
|
44 |
+
radius_worst = st.sidebar.slider('radius_worst', 0.1115,2.873)
|
45 |
+
perimeter_worst = st.sidebar.slider('perimeter_worst', 50.41,251.2)
|
46 |
+
area_worst = st.sidebar.slider('area_worst', 185.2,4254.0)
|
47 |
+
smoothness_worst = st.sidebar.slider('smoothness_worst', 0.07117,0.2226)
|
48 |
+
compactness_worst = st.sidebar.slider('compactness_worst', 0.02729,1.058)
|
49 |
+
concavity_worst = st.sidebar.slider('concavity_worst', 0.0,1.252)
|
50 |
+
concave_points_worst = st.sidebar.slider('concave_points_worst', 0.0,0.291)
|
51 |
+
symmetry_worst = st.sidebar.slider('symmetry_worst', 0.1565,0.6638)
|
52 |
+
fractal_dimension_worst = st.sidebar.slider('fractal_dimension_worst', 0.1565,0.2075)
|
53 |
+
|
54 |
+
|
55 |
+
data = {'radius_mean':[radius_mean],
|
56 |
+
'texture_mean':[texture_mean],
|
57 |
+
'radius_mean':[radius_mean],
|
58 |
+
'perimeter_mean':[perimeter_mean],
|
59 |
+
'radius_mean':[radius_mean],
|
60 |
+
'area_mean':[area_mean],
|
61 |
+
'smoothness_mean':[smoothness_mean],
|
62 |
+
'compactness_mean':[compactness_mean],
|
63 |
+
'concavity_mean':[concavity_mean],
|
64 |
+
'concave_points_mean':[concave_points_mean],
|
65 |
+
'symmetry_mean':[symmetry_mean],
|
66 |
+
'fractal_dimension_mean':[fractal_dimension_mean],
|
67 |
+
'radius_se':[radius_se],
|
68 |
+
'texture_se':[texture_se],
|
69 |
+
'perimeter_se':[perimeter_se],
|
70 |
+
'area_se':[area_se],
|
71 |
+
'smoothness_se':[smoothness_se],
|
72 |
+
'compactness_se':[compactness_se],
|
73 |
+
'concavity_se':[concavity_se],
|
74 |
+
'concave_points_se':[concave_points_se],
|
75 |
+
'symmetry_se':[symmetry_se],
|
76 |
+
'fractal_dimension_se':[fractal_dimension_se],
|
77 |
+
'fractal_dimension_se':[fractal_dimension_se],
|
78 |
+
'radius_worst':[radius_worst],
|
79 |
+
'texture_worst':[texture_worst],
|
80 |
+
'perimeter_worst':[perimeter_worst],
|
81 |
+
'area_worst':[area_worst],
|
82 |
+
'smoothness_worst':[smoothness_worst],
|
83 |
+
'compactness_worst':[compactness_worst],
|
84 |
+
'concavity_worst':[concavity_worst],
|
85 |
+
'concave_points_worst':[concave_points_worst],
|
86 |
+
'symmetry_worst':[symmetry_worst],
|
87 |
+
'fractal_dimension_worst':[fractal_dimension_worst]
|
88 |
+
}
|
89 |
+
|
90 |
+
features = pd.DataFrame(data)
|
91 |
+
return features
|
92 |
+
|
93 |
+
input_df = user_input_features()
|
94 |
+
|
95 |
+
|
96 |
+
breast_raw = pd.read_csv('breast_cancer.csv')
|
97 |
+
breast_raw.fillna(0, inplace=True)
|
98 |
+
breast = breast_raw.drop(columns=['diagnosis'])
|
99 |
+
df = pd.concat([input_df,breast],axis=0)
|
100 |
+
|
101 |
+
df = df[:1] # Selects only the first row (the user input data)
|
102 |
+
df.fillna(0, inplace=True)
|
103 |
+
|
104 |
+
features = ['radius_mean', 'texture_mean', 'perimeter_mean',
|
105 |
+
'area_mean', 'smoothness_mean', 'compactness_mean', 'concavity_mean',
|
106 |
+
'concave points_mean', 'symmetry_mean', 'fractal_dimension_mean',
|
107 |
+
'radius_se', 'texture_se', 'perimeter_se', 'area_se', 'smoothness_se',
|
108 |
+
'compactness_se', 'concavity_se', 'concave points_se', 'symmetry_se',
|
109 |
+
'fractal_dimension_se', 'radius_worst', 'texture_worst',
|
110 |
+
'perimeter_worst', 'area_worst', 'smoothness_worst',
|
111 |
+
'compactness_worst', 'concavity_worst', 'concave points_worst',
|
112 |
+
'symmetry_worst', 'fractal_dimension_worst']
|
113 |
+
|
114 |
+
df = df[features]
|
115 |
+
|
116 |
+
|
117 |
+
st.subheader('User Input features')
|
118 |
+
st.write(df)
|
119 |
+
|
120 |
+
load_clf = pickle.load(open('breast_clf.pkl', 'rb'))
|
121 |
+
prediction = load_clf.predict(df)
|
122 |
+
prediction_proba = load_clf.predict_proba(df)
|
123 |
+
breast_labels = np.array(['Benign','Malignant'])
|
124 |
+
st.subheader('Detection')
|
125 |
+
if(prediction == 'B') :
|
126 |
+
st.write(breast_labels[0])
|
127 |
+
else :
|
128 |
+
st.write(breast_labels[1])
|
129 |
+
st.subheader('Detection Probability')
|
130 |
+
df_proba = pd.DataFrame(data=prediction_proba, index=['Probability'], columns=breast_labels)
|
131 |
+
st.write(df_proba)
|
132 |
+
|
breast_cancer.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
breast_clf.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1850cc1962b012413cce74e5d0ebca84b455eb7beb47d9a39aad7fbb2ef362af
|
3 |
+
size 340235
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
matplotlib==3.5.1
|
2 |
+
numpy==1.21.5
|
3 |
+
pandas==1.4.2
|
4 |
+
seaborn==0.11.2
|
5 |
+
streamlit==1.12.2
|
6 |
+
sklearn
|
setup.sh
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
mkdir -p ~/.streamlit/
|
2 |
+
|
3 |
+
echo "\
|
4 |
+
[general]\n\
|
5 |
+
email = \"your-email@domain.com\"\n\
|
6 |
+
" > ~/.streamlit/credentials.toml
|
7 |
+
|
8 |
+
echo "\
|
9 |
+
[server]\n\
|
10 |
+
headless = true\n\
|
11 |
+
enableCORS=false\n\
|
12 |
+
port = $PORT\n\
|
13 |
+
" > ~/.streamlit/config.toml
|