Spaces:
Runtime error
Runtime error
bills
commited on
Commit
•
580a94d
1
Parent(s):
e48560c
Add some changes on app.py
Browse files
apps.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
from turtle import width
|
3 |
+
import torch
|
4 |
+
import folium
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
import streamlit as st
|
8 |
+
from folium.plugins import MarkerCluster
|
9 |
+
from streamlit_folium import folium_static
|
10 |
+
|
11 |
+
st.set_page_config(
|
12 |
+
page_title="Ship Detection using YOLOv5 Medium Model",
|
13 |
+
page_icon=":ship:",
|
14 |
+
layout="wide"
|
15 |
+
)
|
16 |
+
|
17 |
+
st.write("# Welcome to Ship Detection Application! :satellite:")
|
18 |
+
st.markdown(
|
19 |
+
"""
|
20 |
+
This application is build based on YOLOv5 with extral large model. User just
|
21 |
+
upload an image, and press the 'Predict' button to make a prediction base on
|
22 |
+
a training model before.
|
23 |
+
|
24 |
+
### For more information, please visit:
|
25 |
+
|
26 |
+
- Check out [my github](https://github.com/bills1912)
|
27 |
+
- Jump into YOLOv5 [documentation](https://docs.ultralytics.com/)
|
28 |
+
|
29 |
+
"""
|
30 |
+
)
|
31 |
+
|
32 |
+
st.write("## Ship Imagery Prediction")
|
33 |
+
map_col1, map_col2, map_col3 = st.columns(3)
|
34 |
+
|
35 |
+
ais = pd.read_csv("https://raw.githubusercontent.com/bills1912/marin-vessels-detection/main/data/MarineTraffic_VesselExport_2022-11-25.csv")
|
36 |
+
ais_jakarta = ais[ais['Destination Port'] == 'JAKARTA']
|
37 |
+
ais_list = ais_jakarta.values.tolist()
|
38 |
+
f = folium.Figure(width=1000, height=500)
|
39 |
+
jakarta_vessels = folium.Map(location=[-5.626954250925966, 106.70735731868719], zoom_start=8).add_to(f)
|
40 |
+
ais_data = folium.FeatureGroup(name="marine_vessels")
|
41 |
+
mCluster = MarkerCluster(name="Marine Vessels")
|
42 |
+
for i in ais_list:
|
43 |
+
html = f"<h3>{i[1]}</h3> Vessel Type: {i[8]} </br> Destination Port: {i[2]} </br> Reported Destination: {i[4]} </br> Current Port: {i[6]}\
|
44 |
+
</br> Latitude: {i[9]} </br> Longitude: {i[10]}"
|
45 |
+
iframe = folium.IFrame(html)
|
46 |
+
popup = folium.Popup(iframe, min_width=250, max_width=300)
|
47 |
+
ais_data.add_child(mCluster.add_child(folium.Marker(location=[i[10], i[11]], popup=popup, icon=folium.Icon(color="black", icon="ship", prefix="fa"))))
|
48 |
+
jakarta_vessels.add_child(ais_data)
|
49 |
+
folium_static(jakarta_vessels, width=1370, height=700)
|
50 |
+
|
51 |
+
|
52 |
+
st.write("### Model evaluation:")
|
53 |
+
eval_col1, eval_col2, eval_col3, eval_col4 = st.columns(spec=4)
|
54 |
+
eval_col1.metric("Precision", "89.52%")
|
55 |
+
eval_col2.metric("Recall", "83.54%")
|
56 |
+
eval_col3.metric("mAP 0.5", "85.39%")
|
57 |
+
eval_col4.metric("mAP 0.5:0.95", "62.63%")
|
58 |
+
|
59 |
+
uploaded_file = st.file_uploader("Choose a ship imagery")
|
60 |
+
if uploaded_file is not None:
|
61 |
+
st.image(uploaded_file, caption='Image to predict')
|
62 |
+
# st.write(uploaded_file.)
|
63 |
+
|
64 |
+
prediction = st.button("Predict")
|
65 |
+
if prediction:
|
66 |
+
folder_path = st.text_input('Input the folder path of image')
|
67 |
+
ship_model = torch.hub.load('ultralytics/yolov5', 'custom', path="supercomputer/best.pt", force_reload=True)
|
68 |
+
# results = ship_model(f"C:/Users/bilva/YOLOv5/ship_test/{uploaded_file.name}")
|
69 |
+
results = ship_model(f"{folder_path}/{uploaded_file.name}")
|
70 |
+
with st.spinner("Loading..."):
|
71 |
+
time.sleep(3.5)
|
72 |
+
st.success("Done!")
|
73 |
+
st.image(np.squeeze(results.render()))
|
74 |
+
results.print()
|
75 |
+
# with st.echo():
|
76 |
+
# st.text(f"results.print()")
|
77 |
+
# st.markdown(results.print())
|
78 |
+
# for percent_progress in range (100):
|
79 |
+
# time.sleep(0.1)
|
80 |
+
# progress.progress(percent_progress + 1)
|