Spaces:
Running
Running
from typing import List, Optional | |
import requests | |
import logging | |
from haystack import Document, component | |
from haystack.lazy_imports import LazyImport | |
from PIL import Image | |
logger = logging.getLogger(__name__) | |
with LazyImport(message="Run 'pip install transformers[torch,sentencepiece]'") as torch_and_transformers_import: | |
import torch | |
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer, BlipProcessor, BlipForConditionalGeneration | |
from PIL import Image | |
class ImageCaptioner: | |
def __init__( | |
self, | |
model_name: str = "Salesforce/blip-image-captioning-base", | |
): | |
torch_and_transformers_import.check() | |
self.model_name = model_name | |
if model_name == "nlpconnect/vit-gpt2-image-captioning": | |
self.model = VisionEncoderDecoderModel.from_pretrained(model_name) | |
self.feature_extractor = ViTImageProcessor.from_pretrained(model_name) | |
self.tokenizer = AutoTokenizer.from_pretrained(model_name) | |
max_length = 16 | |
num_beams = 4 | |
self.gen_kwargs = {"max_length": max_length, "num_beams": num_beams} | |
else: | |
self.processor = BlipProcessor.from_pretrained(model_name) | |
self.model = BlipForConditionalGeneration.from_pretrained(model_name) | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
self.model.to(self.device) | |
def run(self, image_file_path: str) -> List[Document]: | |
i_image = Image.open(image_file_path) | |
if i_image.mode != "RGB": | |
i_image = i_image.convert(mode="RGB") | |
preds = [] | |
if self.model_name == "nlpconnect/vit-gpt2-image-captioning": | |
pixel_values = self.feature_extractor(images=[i_image], return_tensors="pt").pixel_values | |
pixel_values = pixel_values.to(self.device) | |
output_ids = self.model.generate(pixel_values, **self.gen_kwargs) | |
preds = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True) | |
preds = [pred.strip() for pred in preds] | |
else: | |
inputs = self.processor([i_image], return_tensors="pt") | |
output_ids = self.model.generate(**inputs) | |
preds = self.processor.batch_decode(output_ids, skip_special_tokens=True) | |
preds = [pred.strip() for pred in preds] | |
# captions: List[Document] = [] | |
# for caption, image_file_path in zip(preds, image_file_paths): | |
# document = Document(content=caption, meta={"image_path": image_file_path}) | |
# captions.append(document) | |
return {"caption": preds[0]} |