Spaces:
Running
Running
import gradio as gr | |
from haystack.nodes import TransformersImageToText | |
from haystack.nodes import PromptNode, PromptTemplate | |
from haystack import Pipeline | |
image_to_text = TransformersImageToText( | |
model_name_or_path="nlpconnect/vit-gpt2-image-captioning", | |
use_gpu=True, | |
batch_size=16, | |
progress_bar=True | |
) | |
prompt_template = PromptTemplate(prompt=""" | |
You will receive a describing text of a photo. | |
Try to come up with a nice Instagram caption that has a phrase rhyming with the text | |
Describing text:{documents}; | |
Caption: | |
""") | |
# prompt_node = PromptNode(model_name_or_path="gpt-3.5-turbo", api_key=api_key, default_prompt_template=pt) | |
prompt_node = PromptNode(model_name_or_path="google/flan-t5-large", default_prompt_template=prompt_template) | |
# prompt_node = PromptNode(model_name_or_path="tiiuae/falcon-7b-instruct", api_key=hf_api_key, default_prompt_template=pt, model_kwargs={"trust_remote_code":True}) | |
captioning_pipeline = Pipeline() | |
captioning_pipeline.add_node(component=image_to_text, name="image_to_text", inputs=["File"]) | |
captioning_pipeline.add_node(component=prompt_node, name="prompt_node", inputs=["image_to_text"]) | |
def generate_caption(image_file_paths): | |
print(image_file_paths) | |
# documents = image_to_text.generate_captions(image_file_paths=[image_file_paths]) | |
# print(documents[0].content) | |
caption = captioning_pipeline.run(file_paths=[image_file_paths]) | |
print(caption) | |
return caption["results"][0] | |
with gr.Blocks(theme="soft") as demo: | |
image = gr.Image(type="filepath") | |
submit_btn = gr.Button("✨ Captionate ✨") | |
caption = gr.Textbox(label="Caption") | |
submit_btn.click(fn=generate_caption, inputs=[image], outputs=[caption]) | |
if __name__ == "__main__": | |
demo.launch() |