test / modules /img2img.py
bilegentile's picture
Upload folder using huggingface_hub
c19ca42 verified
import os
import itertools # SBM Batch frames
import numpy as np
from PIL import Image, ImageOps, ImageFilter, ImageEnhance, ImageChops, UnidentifiedImageError
import modules.scripts
from modules import shared, processing, images
from modules.generation_parameters_copypaste import create_override_settings_dict
from modules.ui import plaintext_to_html
from modules.memstats import memory_stats
debug = shared.log.trace if os.environ.get('SD_PROCESS_DEBUG', None) is not None else lambda *args, **kwargs: None
debug('Trace: PROCESS')
def process_batch(p, input_files, input_dir, output_dir, inpaint_mask_dir, args):
shared.log.debug(f'batch: {input_files}|{input_dir}|{output_dir}|{inpaint_mask_dir}')
processing.fix_seed(p)
if input_files is not None and len(input_files) > 0:
image_files = [f.name for f in input_files]
else:
if not os.path.isdir(input_dir):
shared.log.error(f"Process batch: directory not found: {input_dir}")
return
image_files = os.listdir(input_dir)
image_files = [os.path.join(input_dir, f) for f in image_files]
is_inpaint_batch = False
if inpaint_mask_dir:
inpaint_masks = os.listdir(inpaint_mask_dir)
inpaint_masks = [os.path.join(inpaint_mask_dir, f) for f in inpaint_masks]
is_inpaint_batch = len(inpaint_masks) > 0
if is_inpaint_batch:
shared.log.info(f"Process batch: inpaint batch masks={len(inpaint_masks)}")
save_normally = output_dir == ''
p.do_not_save_grid = True
p.do_not_save_samples = not save_normally
shared.state.job_count = len(image_files) * p.n_iter
if shared.opts.batch_frame_mode: # SBM Frame mode is on, process each image in batch with same seed
window_size = p.batch_size
btcrept = 1
p.seed = [p.seed] * window_size # SBM MONKEYPATCH: Need to change processing to support a fixed seed value.
p.subseed = [p.subseed] * window_size # SBM MONKEYPATCH
shared.log.info(f"Process batch: inputs={len(image_files)} parallel={window_size} outputs={p.n_iter} per input ")
else: # SBM Frame mode is off, standard operation of repeating same images with sequential seed.
window_size = 1
btcrept = p.batch_size
shared.log.info(f"Process batch: inputs={len(image_files)} outputs={p.n_iter * p.batch_size} per input")
for i in range(0, len(image_files), window_size):
if shared.state.skipped:
shared.state.skipped = False
if shared.state.interrupted:
break
batch_image_files = image_files[i:i+window_size]
batch_images = []
for image_file in batch_image_files:
try:
img = Image.open(image_file)
if p.scale_by != 1:
p.width = int(img.width * p.scale_by)
p.height = int(img.height * p.scale_by)
except UnidentifiedImageError as e:
shared.log.error(f"Image error: {e}")
continue
img = ImageOps.exif_transpose(img)
batch_images.append(img)
batch_images = batch_images * btcrept # Standard mode sends the same image per batchsize.
p.init_images = batch_images
if is_inpaint_batch:
# try to find corresponding mask for an image using simple filename matching
batch_mask_images = []
for image_file in batch_image_files:
mask_image_path = os.path.join(inpaint_mask_dir, os.path.basename(image_file))
# if not found use first one ("same mask for all images" use-case)
if mask_image_path not in inpaint_masks:
mask_image_path = inpaint_masks[0]
mask_image = Image.open(mask_image_path)
batch_mask_images.append(mask_image)
batch_mask_images = batch_mask_images * btcrept
p.image_mask = batch_mask_images
batch_image_files = batch_image_files * btcrept # List used for naming later.
proc = modules.scripts.scripts_img2img.run(p, *args)
if proc is None:
proc = processing.process_images(p)
for n, (image, image_file) in enumerate(itertools.zip_longest(proc.images,batch_image_files)):
basename = ''
if shared.opts.use_original_name_batch:
forced_filename, ext = os.path.splitext(os.path.basename(image_file))
else:
forced_filename = None
ext = shared.opts.samples_format
if len(proc.images) > 1:
basename = f'{n + i}' if shared.opts.batch_frame_mode else f'{n}'
else:
basename = ''
if output_dir == '':
output_dir = shared.opts.outdir_img2img_samples
if not save_normally:
os.makedirs(output_dir, exist_ok=True)
geninfo, items = images.read_info_from_image(image)
for k, v in items.items():
image.info[k] = v
images.save_image(image, path=output_dir, basename=basename, seed=None, prompt=None, extension=ext, info=geninfo, short_filename=True, no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=image.info, forced_filename=forced_filename)
shared.log.debug(f'Processed: images={len(batch_image_files)} memory={memory_stats()} batch')
def img2img(id_task: str, mode: int,
prompt, negative_prompt, prompt_styles,
init_img,
sketch,
init_img_with_mask,
inpaint_color_sketch,
inpaint_color_sketch_orig,
init_img_inpaint,
init_mask_inpaint,
steps,
sampler_index,
mask_blur, mask_alpha,
inpainting_fill,
full_quality, restore_faces, tiling,
n_iter, batch_size,
cfg_scale, image_cfg_scale,
diffusers_guidance_rescale,
sag_scale,
cfg_end,
refiner_start,
clip_skip,
denoising_strength,
seed, subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w,
selected_scale_tab,
height, width,
scale_by,
resize_mode, resize_name,
inpaint_full_res, inpaint_full_res_padding, inpainting_mask_invert,
img2img_batch_files, img2img_batch_input_dir, img2img_batch_output_dir, img2img_batch_inpaint_mask_dir,
hdr_mode, hdr_brightness, hdr_color, hdr_sharpen, hdr_clamp, hdr_boundary, hdr_threshold, hdr_maximize, hdr_max_center, hdr_max_boundry, hdr_color_picker, hdr_tint_ratio,
override_settings_texts,
*args): # pylint: disable=unused-argument
if shared.sd_model is None:
shared.log.warning('Model not loaded')
return [], '', '', 'Error: model not loaded'
debug(f'img2img: id_task={id_task}|mode={mode}|prompt={prompt}|negative_prompt={negative_prompt}|prompt_styles={prompt_styles}|init_img={init_img}|sketch={sketch}|init_img_with_mask={init_img_with_mask}|inpaint_color_sketch={inpaint_color_sketch}|inpaint_color_sketch_orig={inpaint_color_sketch_orig}|init_img_inpaint={init_img_inpaint}|init_mask_inpaint={init_mask_inpaint}|steps={steps}|sampler_index={sampler_index}||mask_blur={mask_blur}|mask_alpha={mask_alpha}|inpainting_fill={inpainting_fill}|full_quality={full_quality}|restore_faces={restore_faces}|tiling={tiling}|n_iter={n_iter}|batch_size={batch_size}|cfg_scale={cfg_scale}|image_cfg_scale={image_cfg_scale}|clip_skip={clip_skip}|denoising_strength={denoising_strength}|seed={seed}|subseed{subseed}|subseed_strength={subseed_strength}|seed_resize_from_h={seed_resize_from_h}|seed_resize_from_w={seed_resize_from_w}|selected_scale_tab={selected_scale_tab}|height={height}|width={width}|scale_by={scale_by}|resize_mode={resize_mode}|resize_name={resize_name}|inpaint_full_res={inpaint_full_res}|inpaint_full_res_padding={inpaint_full_res_padding}|inpainting_mask_invert={inpainting_mask_invert}|img2img_batch_files={img2img_batch_files}|img2img_batch_input_dir={img2img_batch_input_dir}|img2img_batch_output_dir={img2img_batch_output_dir}|img2img_batch_inpaint_mask_dir={img2img_batch_inpaint_mask_dir}|override_settings_texts={override_settings_texts}')
if mode == 5:
if img2img_batch_files is None or len(img2img_batch_files) == 0:
shared.log.debug('Init bactch images not set')
elif init_img:
shared.log.debug('Init image not set')
if sampler_index is None:
sampler_index = 0
override_settings = create_override_settings_dict(override_settings_texts)
if mode == 0: # img2img
if init_img is None:
return [], '', '', 'Error: init image not provided'
image = init_img.convert("RGB")
mask = None
elif mode == 1: # img2img sketch
if sketch is None:
return [], '', '', 'Error: sketch image not provided'
image = sketch.convert("RGB")
mask = None
elif mode == 2: # inpaint
if init_img_with_mask is None:
return [], '', '', 'Error: init image with mask not provided'
image = init_img_with_mask["image"]
mask = init_img_with_mask["mask"]
alpha_mask = ImageOps.invert(image.split()[-1]).convert('L').point(lambda x: 255 if x > 0 else 0, mode='1')
mask = ImageChops.lighter(alpha_mask, mask.convert('L')).convert('L')
image = image.convert("RGB")
elif mode == 3: # inpaint sketch
if inpaint_color_sketch is None:
return [], '', '', 'Error: color sketch image not provided'
image = inpaint_color_sketch
orig = inpaint_color_sketch_orig or inpaint_color_sketch
pred = np.any(np.array(image) != np.array(orig), axis=-1)
mask = Image.fromarray((255.0 * pred).astype(np.uint8), "L")
mask = ImageEnhance.Brightness(mask).enhance(mask_alpha)
blur = ImageFilter.GaussianBlur(mask_blur)
image = Image.composite(image.filter(blur), orig, mask.filter(blur))
image = image.convert("RGB")
elif mode == 4: # inpaint upload mask
if init_img_inpaint is None:
return [], '', '', 'Error: inpaint image not provided'
image = init_img_inpaint
mask = init_mask_inpaint
else:
shared.log.error(f'Image processing unknown mode: {mode}')
image = None
mask = None
if image is not None:
image = ImageOps.exif_transpose(image)
if selected_scale_tab == 1 and resize_mode != 0:
width = int(image.width * scale_by)
height = int(image.height * scale_by)
p = processing.StableDiffusionProcessingImg2Img(
sd_model=shared.sd_model,
outpath_samples=shared.opts.outdir_samples or shared.opts.outdir_img2img_samples,
outpath_grids=shared.opts.outdir_grids or shared.opts.outdir_img2img_grids,
prompt=prompt,
negative_prompt=negative_prompt,
styles=prompt_styles,
seed=seed,
subseed=subseed,
subseed_strength=subseed_strength,
seed_resize_from_h=seed_resize_from_h,
seed_resize_from_w=seed_resize_from_w,
seed_enable_extras=True,
sampler_name = processing.get_sampler_name(sampler_index, img=True),
batch_size=batch_size,
n_iter=n_iter,
steps=steps,
cfg_scale=cfg_scale,
cfg_end=cfg_end,
clip_skip=clip_skip,
width=width,
height=height,
full_quality=full_quality,
restore_faces=restore_faces,
tiling=tiling,
init_images=[image],
mask=mask,
mask_blur=mask_blur,
inpainting_fill=inpainting_fill,
resize_mode=resize_mode,
resize_name=resize_name,
denoising_strength=denoising_strength,
image_cfg_scale=image_cfg_scale,
diffusers_guidance_rescale=diffusers_guidance_rescale,
sag_scale=sag_scale,
refiner_start=refiner_start,
inpaint_full_res=inpaint_full_res != 0,
inpaint_full_res_padding=inpaint_full_res_padding,
inpainting_mask_invert=inpainting_mask_invert,
hdr_mode=hdr_mode, hdr_brightness=hdr_brightness, hdr_color=hdr_color, hdr_sharpen=hdr_sharpen, hdr_clamp=hdr_clamp,
hdr_boundary=hdr_boundary, hdr_threshold=hdr_threshold, hdr_maximize=hdr_maximize, hdr_max_center=hdr_max_center, hdr_max_boundry=hdr_max_boundry, hdr_color_picker=hdr_color_picker, hdr_tint_ratio=hdr_tint_ratio,
override_settings=override_settings,
)
if selected_scale_tab == 1 and resize_mode != 0:
p.scale_by = scale_by
p.scripts = modules.scripts.scripts_img2img
p.script_args = args
if mask:
p.extra_generation_params["Mask blur"] = mask_blur
p.extra_generation_params["Mask alpha"] = mask_alpha
p.extra_generation_params["Mask invert"] = inpainting_mask_invert
p.extra_generation_params["Mask content"] = inpainting_fill
p.extra_generation_params["Mask area"] = inpaint_full_res
p.extra_generation_params["Mask padding"] = inpaint_full_res_padding
p.is_batch = mode == 5
if p.is_batch:
process_batch(p, img2img_batch_files, img2img_batch_input_dir, img2img_batch_output_dir, img2img_batch_inpaint_mask_dir, args)
processed = processing.Processed(p, [], p.seed, "")
else:
processed = modules.scripts.scripts_img2img.run(p, *args)
if processed is None:
processed = processing.process_images(p)
p.close()
generation_info_js = processed.js() if processed is not None else ''
if processed is None:
return [], generation_info_js, '', 'Error: no images'
return processed.images, generation_info_js, processed.info, plaintext_to_html(processed.comments)