fastsdtest / frontend /webui /lora_models_ui.py
bilegentile's picture
Upload folder using huggingface_hub
564df58 verified
raw
history blame
6.45 kB
import gradio as gr
from os import path
from backend.lora import (
get_lora_models,
get_active_lora_weights,
update_lora_weights,
load_lora_weight,
)
from state import get_settings, get_context
from frontend.utils import get_valid_lora_model
from models.interface_types import InterfaceType
from backend.models.lcmdiffusion_setting import LCMDiffusionSetting
_MAX_LORA_WEIGHTS = 5
_custom_lora_sliders = []
_custom_lora_names = []
_custom_lora_columns = []
app_settings = get_settings()
def on_click_update_weight(*lora_weights):
update_weights = []
active_weights = get_active_lora_weights()
if not len(active_weights):
gr.Warning("No active LoRAs, first you need to load LoRA model")
return
for idx, lora in enumerate(active_weights):
update_weights.append(
(
lora[0],
lora_weights[idx],
)
)
if len(update_weights) > 0:
update_lora_weights(
get_context(InterfaceType.WEBUI).lcm_text_to_image.pipeline,
app_settings.settings.lcm_diffusion_setting,
update_weights,
)
def on_click_load_lora(lora_name, lora_weight):
if app_settings.settings.lcm_diffusion_setting.use_openvino:
gr.Warning("Currently LoRA is not supported in OpenVINO.")
return
lora_models_map = get_lora_models(
app_settings.settings.lcm_diffusion_setting.lora.models_dir
)
# Load a new LoRA
settings = app_settings.settings.lcm_diffusion_setting
settings.lora.fuse = False
settings.lora.enabled = False
settings.lora.path = lora_models_map[lora_name]
settings.lora.weight = lora_weight
if not path.exists(settings.lora.path):
gr.Warning("Invalid LoRA model path!")
return
pipeline = get_context(InterfaceType.WEBUI).lcm_text_to_image.pipeline
if not pipeline:
gr.Warning("Pipeline not initialized. Please generate an image first.")
return
settings.lora.enabled = True
load_lora_weight(
get_context(InterfaceType.WEBUI).lcm_text_to_image.pipeline,
settings,
)
# Update Gradio LoRA UI
global _MAX_LORA_WEIGHTS
values = []
labels = []
rows = []
active_weights = get_active_lora_weights()
for idx, lora in enumerate(active_weights):
labels.append(f"{lora[0]}: ")
values.append(lora[1])
rows.append(gr.Row.update(visible=True))
for i in range(len(active_weights), _MAX_LORA_WEIGHTS):
labels.append(f"Update weight")
values.append(0.0)
rows.append(gr.Row.update(visible=False))
return labels + values + rows
def get_lora_models_ui() -> None:
with gr.Blocks() as ui:
gr.HTML(
"Download and place your LoRA model weights in <b>lora_models</b> folders and restart App"
)
with gr.Row():
with gr.Column():
with gr.Row():
lora_models_map = get_lora_models(
app_settings.settings.lcm_diffusion_setting.lora.models_dir
)
valid_model = get_valid_lora_model(
list(lora_models_map.values()),
app_settings.settings.lcm_diffusion_setting.lora.path,
app_settings.settings.lcm_diffusion_setting.lora.models_dir,
)
if valid_model != "":
valid_model_path = lora_models_map[valid_model]
app_settings.settings.lcm_diffusion_setting.lora.path = (
valid_model_path
)
else:
app_settings.settings.lcm_diffusion_setting.lora.path = ""
lora_model = gr.Dropdown(
lora_models_map.keys(),
label="LoRA model",
info="LoRA model weight to load (You can use Lora models from Civitai or Hugging Face .safetensors format)",
value=valid_model,
interactive=True,
)
lora_weight = gr.Slider(
0.0,
1.0,
value=app_settings.settings.lcm_diffusion_setting.lora.weight,
step=0.05,
label="Initial Lora weight",
interactive=True,
)
load_lora_btn = gr.Button(
"Load selected LoRA",
elem_id="load_lora_button",
scale=0,
)
with gr.Row():
gr.Markdown(
"## Loaded LoRA models",
show_label=False,
)
update_lora_weights_btn = gr.Button(
"Update LoRA weights",
elem_id="load_lora_button",
scale=0,
)
global _MAX_LORA_WEIGHTS
global _custom_lora_sliders
global _custom_lora_names
global _custom_lora_columns
for i in range(0, _MAX_LORA_WEIGHTS):
new_row = gr.Column(visible=False)
_custom_lora_columns.append(new_row)
with new_row:
lora_name = gr.Markdown(
"Lora Name",
show_label=True,
)
lora_slider = gr.Slider(
0.0,
1.0,
step=0.05,
label="LoRA weight",
interactive=True,
visible=True,
)
_custom_lora_names.append(lora_name)
_custom_lora_sliders.append(lora_slider)
load_lora_btn.click(
fn=on_click_load_lora,
inputs=[lora_model, lora_weight],
outputs=[
*_custom_lora_names,
*_custom_lora_sliders,
*_custom_lora_columns,
],
)
update_lora_weights_btn.click(
fn=on_click_update_weight,
inputs=[*_custom_lora_sliders],
outputs=None,
)