fastsdtest / frontend /cli_interactive.py
bilegentile's picture
Upload folder using huggingface_hub
564df58 verified
raw
history blame
20.7 kB
from os import path
from PIL import Image
from typing import Any
from constants import DEVICE
from paths import FastStableDiffusionPaths
from backend.upscale.upscaler import upscale_image
from backend.controlnet import controlnet_settings_from_dict
from backend.upscale.tiled_upscale import generate_upscaled_image
from frontend.webui.image_variations_ui import generate_image_variations
from backend.lora import (
get_active_lora_weights,
update_lora_weights,
load_lora_weight,
)
from backend.models.lcmdiffusion_setting import (
DiffusionTask,
LCMDiffusionSetting,
ControlNetSetting,
)
_batch_count = 1
_edit_lora_settings = False
def user_value(
value_type: type,
message: str,
default_value: Any,
) -> Any:
try:
value = value_type(input(message))
except:
value = default_value
return value
def interactive_mode(
config,
context,
):
print("=============================================")
print("Welcome to FastSD CPU Interactive CLI")
print("=============================================")
while True:
print("> 1. Text to Image")
print("> 2. Image to Image")
print("> 3. Image Variations")
print("> 4. EDSR Upscale")
print("> 5. SD Upscale")
print("> 6. Edit default generation settings")
print("> 7. Edit LoRA settings")
print("> 8. Edit ControlNet settings")
print("> 9. Edit negative prompt")
print("> 10. Quit")
option = user_value(
int,
"Enter a Diffusion Task number (1): ",
1,
)
if option not in range(1, 11):
print("Wrong Diffusion Task number!")
exit()
if option == 1:
interactive_txt2img(
config,
context,
)
elif option == 2:
interactive_img2img(
config,
context,
)
elif option == 3:
interactive_variations(
config,
context,
)
elif option == 4:
interactive_edsr(
config,
context,
)
elif option == 5:
interactive_sdupscale(
config,
context,
)
elif option == 6:
interactive_settings(
config,
context,
)
elif option == 7:
interactive_lora(
config,
context,
True,
)
elif option == 8:
interactive_controlnet(
config,
context,
True,
)
elif option == 9:
interactive_negative(
config,
context,
)
elif option == 10:
exit()
def interactive_negative(
config,
context,
):
settings = config.lcm_diffusion_setting
print(f"Current negative prompt: '{settings.negative_prompt}'")
user_input = input("Write a negative prompt (set guidance > 1.0): ")
if user_input == "":
return
else:
settings.negative_prompt = user_input
def interactive_controlnet(
config,
context,
menu_flag=False,
):
"""
@param menu_flag: Indicates whether this function was called from the main
interactive CLI menu; _True_ if called from the main menu, _False_ otherwise
"""
settings = config.lcm_diffusion_setting
if not settings.controlnet:
settings.controlnet = ControlNetSetting()
current_enabled = settings.controlnet.enabled
current_adapter_path = settings.controlnet.adapter_path
current_conditioning_scale = settings.controlnet.conditioning_scale
current_control_image = settings.controlnet._control_image
option = input("Enable ControlNet? (y/N): ")
settings.controlnet.enabled = True if option.upper() == "Y" else False
if settings.controlnet.enabled:
option = input(
f"Enter ControlNet adapter path ({settings.controlnet.adapter_path}): "
)
if option != "":
settings.controlnet.adapter_path = option
settings.controlnet.conditioning_scale = user_value(
float,
f"Enter ControlNet conditioning scale ({settings.controlnet.conditioning_scale}): ",
settings.controlnet.conditioning_scale,
)
option = input(
f"Enter ControlNet control image path (Leave empty to reuse current): "
)
if option != "":
try:
new_image = Image.open(option)
settings.controlnet._control_image = new_image
except (AttributeError, FileNotFoundError) as e:
settings.controlnet._control_image = None
if (
not settings.controlnet.adapter_path
or not path.exists(settings.controlnet.adapter_path)
or not settings.controlnet._control_image
):
print("Invalid ControlNet settings! Disabling ControlNet")
settings.controlnet.enabled = False
if (
settings.controlnet.enabled != current_enabled
or settings.controlnet.adapter_path != current_adapter_path
):
settings.rebuild_pipeline = True
def interactive_lora(
config,
context,
menu_flag=False,
):
"""
@param menu_flag: Indicates whether this function was called from the main
interactive CLI menu; _True_ if called from the main menu, _False_ otherwise
"""
if context == None or context.lcm_text_to_image.pipeline == None:
print("Diffusion pipeline not initialized, please run a generation task first!")
return
print("> 1. Change LoRA weights")
print("> 2. Load new LoRA model")
option = user_value(
int,
"Enter a LoRA option (1): ",
1,
)
if option not in range(1, 3):
print("Wrong LoRA option!")
return
if option == 1:
update_weights = []
active_weights = get_active_lora_weights()
for lora in active_weights:
weight = user_value(
float,
f"Enter a new LoRA weight for {lora[0]} ({lora[1]}): ",
lora[1],
)
update_weights.append(
(
lora[0],
weight,
)
)
if len(update_weights) > 0:
update_lora_weights(
context.lcm_text_to_image.pipeline,
config.lcm_diffusion_setting,
update_weights,
)
elif option == 2:
# Load a new LoRA
settings = config.lcm_diffusion_setting
settings.lora.fuse = False
settings.lora.enabled = False
settings.lora.path = input("Enter LoRA model path: ")
settings.lora.weight = user_value(
float,
"Enter a LoRA weight (0.5): ",
0.5,
)
if not path.exists(settings.lora.path):
print("Invalid LoRA model path!")
return
settings.lora.enabled = True
load_lora_weight(context.lcm_text_to_image.pipeline, settings)
if menu_flag:
global _edit_lora_settings
_edit_lora_settings = False
option = input("Edit LoRA settings after every generation? (y/N): ")
if option.upper() == "Y":
_edit_lora_settings = True
def interactive_settings(
config,
context,
):
global _batch_count
settings = config.lcm_diffusion_setting
print("Enter generation settings (leave empty to use current value)")
print("> 1. Use LCM")
print("> 2. Use LCM-Lora")
print("> 3. Use OpenVINO")
option = user_value(
int,
"Select inference model option (1): ",
1,
)
if option not in range(1, 4):
print("Wrong inference model option! Falling back to defaults")
return
settings.use_lcm_lora = False
settings.use_openvino = False
if option == 1:
lcm_model_id = input(f"Enter LCM model ID ({settings.lcm_model_id}): ")
if lcm_model_id != "":
settings.lcm_model_id = lcm_model_id
elif option == 2:
settings.use_lcm_lora = True
lcm_lora_id = input(
f"Enter LCM-Lora model ID ({settings.lcm_lora.lcm_lora_id}): "
)
if lcm_lora_id != "":
settings.lcm_lora.lcm_lora_id = lcm_lora_id
base_model_id = input(
f"Enter Base model ID ({settings.lcm_lora.base_model_id}): "
)
if base_model_id != "":
settings.lcm_lora.base_model_id = base_model_id
elif option == 3:
settings.use_openvino = True
openvino_lcm_model_id = input(
f"Enter OpenVINO model ID ({settings.openvino_lcm_model_id}): "
)
if openvino_lcm_model_id != "":
settings.openvino_lcm_model_id = openvino_lcm_model_id
settings.use_offline_model = True
settings.use_tiny_auto_encoder = True
option = input("Work offline? (Y/n): ")
if option.upper() == "N":
settings.use_offline_model = False
option = input("Use Tiny Auto Encoder? (Y/n): ")
if option.upper() == "N":
settings.use_tiny_auto_encoder = False
settings.image_width = user_value(
int,
f"Image width ({settings.image_width}): ",
settings.image_width,
)
settings.image_height = user_value(
int,
f"Image height ({settings.image_height}): ",
settings.image_height,
)
settings.inference_steps = user_value(
int,
f"Inference steps ({settings.inference_steps}): ",
settings.inference_steps,
)
settings.guidance_scale = user_value(
float,
f"Guidance scale ({settings.guidance_scale}): ",
settings.guidance_scale,
)
settings.number_of_images = user_value(
int,
f"Number of images per batch ({settings.number_of_images}): ",
settings.number_of_images,
)
_batch_count = user_value(
int,
f"Batch count ({_batch_count}): ",
_batch_count,
)
# output_format = user_value(int, f"Output format (PNG)", 1)
print(config.lcm_diffusion_setting)
def interactive_txt2img(
config,
context,
):
global _batch_count
config.lcm_diffusion_setting.diffusion_task = DiffusionTask.text_to_image.value
user_input = input("Write a prompt (write 'exit' to quit): ")
while True:
if user_input == "exit":
return
elif user_input == "":
user_input = config.lcm_diffusion_setting.prompt
config.lcm_diffusion_setting.prompt = user_input
for i in range(0, _batch_count):
context.generate_text_to_image(
settings=config,
device=DEVICE,
)
if _edit_lora_settings:
interactive_lora(
config,
context,
)
user_input = input("Write a prompt: ")
def interactive_img2img(
config,
context,
):
global _batch_count
settings = config.lcm_diffusion_setting
settings.diffusion_task = DiffusionTask.image_to_image.value
steps = settings.inference_steps
source_path = input("Image path: ")
if source_path == "":
print("Error : You need to provide a file in img2img mode")
return
settings.strength = user_value(
float,
f"img2img strength ({settings.strength}): ",
settings.strength,
)
settings.inference_steps = int(steps / settings.strength + 1)
user_input = input("Write a prompt (write 'exit' to quit): ")
while True:
if user_input == "exit":
settings.inference_steps = steps
return
settings.init_image = Image.open(source_path)
settings.prompt = user_input
for i in range(0, _batch_count):
context.generate_text_to_image(
settings=config,
device=DEVICE,
)
new_path = input(f"Image path ({source_path}): ")
if new_path != "":
source_path = new_path
settings.strength = user_value(
float,
f"img2img strength ({settings.strength}): ",
settings.strength,
)
if _edit_lora_settings:
interactive_lora(
config,
context,
)
settings.inference_steps = int(steps / settings.strength + 1)
user_input = input("Write a prompt: ")
def interactive_variations(
config,
context,
):
global _batch_count
settings = config.lcm_diffusion_setting
settings.diffusion_task = DiffusionTask.image_to_image.value
steps = settings.inference_steps
source_path = input("Image path: ")
if source_path == "":
print("Error : You need to provide a file in Image variations mode")
return
settings.strength = user_value(
float,
f"Image variations strength ({settings.strength}): ",
settings.strength,
)
settings.inference_steps = int(steps / settings.strength + 1)
while True:
settings.init_image = Image.open(source_path)
settings.prompt = ""
for i in range(0, _batch_count):
generate_image_variations(
settings.init_image,
settings.strength,
)
if _edit_lora_settings:
interactive_lora(
config,
context,
)
user_input = input("Continue in Image variations mode? (Y/n): ")
if user_input.upper() == "N":
settings.inference_steps = steps
return
new_path = input(f"Image path ({source_path}): ")
if new_path != "":
source_path = new_path
settings.strength = user_value(
float,
f"Image variations strength ({settings.strength}): ",
settings.strength,
)
settings.inference_steps = int(steps / settings.strength + 1)
def interactive_edsr(
config,
context,
):
source_path = input("Image path: ")
if source_path == "":
print("Error : You need to provide a file in EDSR mode")
return
while True:
output_path = FastStableDiffusionPaths.get_upscale_filepath(
source_path,
2,
config.generated_images.format,
)
result = upscale_image(
context,
source_path,
output_path,
2,
)
user_input = input("Continue in EDSR upscale mode? (Y/n): ")
if user_input.upper() == "N":
return
new_path = input(f"Image path ({source_path}): ")
if new_path != "":
source_path = new_path
def interactive_sdupscale_settings(config):
steps = config.lcm_diffusion_setting.inference_steps
custom_settings = {}
print("> 1. Upscale whole image")
print("> 2. Define custom tiles (advanced)")
option = user_value(
int,
"Select an SD Upscale option (1): ",
1,
)
if option not in range(1, 3):
print("Wrong SD Upscale option!")
return
# custom_settings["source_file"] = args.file
custom_settings["source_file"] = ""
new_path = input(f"Input image path ({custom_settings['source_file']}): ")
if new_path != "":
custom_settings["source_file"] = new_path
if custom_settings["source_file"] == "":
print("Error : You need to provide a file in SD Upscale mode")
return
custom_settings["target_file"] = None
if option == 2:
custom_settings["target_file"] = input("Image to patch: ")
if custom_settings["target_file"] == "":
print("No target file provided, upscaling whole input image instead!")
custom_settings["target_file"] = None
option = 1
custom_settings["output_format"] = config.generated_images.format
custom_settings["strength"] = user_value(
float,
f"SD Upscale strength ({config.lcm_diffusion_setting.strength}): ",
config.lcm_diffusion_setting.strength,
)
config.lcm_diffusion_setting.inference_steps = int(
steps / custom_settings["strength"] + 1
)
if option == 1:
custom_settings["scale_factor"] = user_value(
float,
f"Scale factor (2.0): ",
2.0,
)
custom_settings["tile_size"] = user_value(
int,
f"Split input image into tiles of the following size, in pixels (256): ",
256,
)
custom_settings["tile_overlap"] = user_value(
int,
f"Tile overlap, in pixels (16): ",
16,
)
elif option == 2:
custom_settings["scale_factor"] = user_value(
float,
"Input image to Image-to-patch scale_factor (2.0): ",
2.0,
)
custom_settings["tile_size"] = 256
custom_settings["tile_overlap"] = 16
custom_settings["prompt"] = input(
"Write a prompt describing the input image (optional): "
)
custom_settings["tiles"] = []
if option == 2:
add_tile = True
while add_tile:
print("=== Define custom SD Upscale tile ===")
tile_x = user_value(
int,
"Enter tile's X position: ",
0,
)
tile_y = user_value(
int,
"Enter tile's Y position: ",
0,
)
tile_w = user_value(
int,
"Enter tile's width (256): ",
256,
)
tile_h = user_value(
int,
"Enter tile's height (256): ",
256,
)
tile_scale = user_value(
float,
"Enter tile's scale factor (2.0): ",
2.0,
)
tile_prompt = input("Enter tile's prompt (optional): ")
custom_settings["tiles"].append(
{
"x": tile_x,
"y": tile_y,
"w": tile_w,
"h": tile_h,
"mask_box": None,
"prompt": tile_prompt,
"scale_factor": tile_scale,
}
)
tile_option = input("Do you want to define another tile? (y/N): ")
if tile_option == "" or tile_option.upper() == "N":
add_tile = False
return custom_settings
def interactive_sdupscale(
config,
context,
):
settings = config.lcm_diffusion_setting
settings.diffusion_task = DiffusionTask.image_to_image.value
settings.init_image = ""
source_path = ""
steps = settings.inference_steps
while True:
custom_upscale_settings = None
option = input("Edit custom SD Upscale settings? (y/N): ")
if option.upper() == "Y":
config.lcm_diffusion_setting.inference_steps = steps
custom_upscale_settings = interactive_sdupscale_settings(config)
if not custom_upscale_settings:
return
source_path = custom_upscale_settings["source_file"]
else:
new_path = input(f"Image path ({source_path}): ")
if new_path != "":
source_path = new_path
if source_path == "":
print("Error : You need to provide a file in SD Upscale mode")
return
settings.strength = user_value(
float,
f"SD Upscale strength ({settings.strength}): ",
settings.strength,
)
settings.inference_steps = int(steps / settings.strength + 1)
output_path = FastStableDiffusionPaths.get_upscale_filepath(
source_path,
2,
config.generated_images.format,
)
generate_upscaled_image(
config,
source_path,
settings.strength,
upscale_settings=custom_upscale_settings,
context=context,
tile_overlap=32 if settings.use_openvino else 16,
output_path=output_path,
image_format=config.generated_images.format,
)
user_input = input("Continue in SD Upscale mode? (Y/n): ")
if user_input.upper() == "N":
settings.inference_steps = steps
return