Spaces:
Runtime error
Runtime error
Delete run.py
Browse files
run.py
DELETED
@@ -1,162 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
import logging
|
3 |
-
import os
|
4 |
-
import time
|
5 |
-
|
6 |
-
import numpy as np
|
7 |
-
import rembg
|
8 |
-
import torch
|
9 |
-
from PIL import Image
|
10 |
-
|
11 |
-
from tsr.system import TSR
|
12 |
-
from tsr.utils import remove_background, resize_foreground, save_video
|
13 |
-
|
14 |
-
|
15 |
-
class Timer:
|
16 |
-
def __init__(self):
|
17 |
-
self.items = {}
|
18 |
-
self.time_scale = 1000.0 # ms
|
19 |
-
self.time_unit = "ms"
|
20 |
-
|
21 |
-
def start(self, name: str) -> None:
|
22 |
-
if torch.cuda.is_available():
|
23 |
-
torch.cuda.synchronize()
|
24 |
-
self.items[name] = time.time()
|
25 |
-
logging.info(f"{name} ...")
|
26 |
-
|
27 |
-
def end(self, name: str) -> float:
|
28 |
-
if name not in self.items:
|
29 |
-
return
|
30 |
-
if torch.cuda.is_available():
|
31 |
-
torch.cuda.synchronize()
|
32 |
-
start_time = self.items.pop(name)
|
33 |
-
delta = time.time() - start_time
|
34 |
-
t = delta * self.time_scale
|
35 |
-
logging.info(f"{name} finished in {t:.2f}{self.time_unit}.")
|
36 |
-
|
37 |
-
|
38 |
-
timer = Timer()
|
39 |
-
|
40 |
-
|
41 |
-
logging.basicConfig(
|
42 |
-
format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO
|
43 |
-
)
|
44 |
-
parser = argparse.ArgumentParser()
|
45 |
-
parser.add_argument("image", type=str, nargs="+", help="Path to input image(s).")
|
46 |
-
parser.add_argument(
|
47 |
-
"--device",
|
48 |
-
default="cuda:0",
|
49 |
-
type=str,
|
50 |
-
help="Device to use. If no CUDA-compatible device is found, will fallback to 'cpu'. Default: 'cuda:0'",
|
51 |
-
)
|
52 |
-
parser.add_argument(
|
53 |
-
"--pretrained-model-name-or-path",
|
54 |
-
default="stabilityai/TripoSR",
|
55 |
-
type=str,
|
56 |
-
help="Path to the pretrained model. Could be either a huggingface model id is or a local path. Default: 'stabilityai/TripoSR'",
|
57 |
-
)
|
58 |
-
parser.add_argument(
|
59 |
-
"--chunk-size",
|
60 |
-
default=8192,
|
61 |
-
type=int,
|
62 |
-
help="Evaluation chunk size for surface extraction and rendering. Smaller chunk size reduces VRAM usage but increases computation time. 0 for no chunking. Default: 8192",
|
63 |
-
)
|
64 |
-
parser.add_argument(
|
65 |
-
"--mc-resolution",
|
66 |
-
default=256,
|
67 |
-
type=int,
|
68 |
-
help="Marching cubes grid resolution. Default: 256"
|
69 |
-
)
|
70 |
-
parser.add_argument(
|
71 |
-
"--no-remove-bg",
|
72 |
-
action="store_true",
|
73 |
-
help="If specified, the background will NOT be automatically removed from the input image, and the input image should be an RGB image with gray background and properly-sized foreground. Default: false",
|
74 |
-
)
|
75 |
-
parser.add_argument(
|
76 |
-
"--foreground-ratio",
|
77 |
-
default=0.85,
|
78 |
-
type=float,
|
79 |
-
help="Ratio of the foreground size to the image size. Only used when --no-remove-bg is not specified. Default: 0.85",
|
80 |
-
)
|
81 |
-
parser.add_argument(
|
82 |
-
"--output-dir",
|
83 |
-
default="output/",
|
84 |
-
type=str,
|
85 |
-
help="Output directory to save the results. Default: 'output/'",
|
86 |
-
)
|
87 |
-
parser.add_argument(
|
88 |
-
"--model-save-format",
|
89 |
-
default="obj",
|
90 |
-
type=str,
|
91 |
-
choices=["obj", "glb"],
|
92 |
-
help="Format to save the extracted mesh. Default: 'obj'",
|
93 |
-
)
|
94 |
-
parser.add_argument(
|
95 |
-
"--render",
|
96 |
-
action="store_true",
|
97 |
-
help="If specified, save a NeRF-rendered video. Default: false",
|
98 |
-
)
|
99 |
-
args = parser.parse_args()
|
100 |
-
|
101 |
-
output_dir = args.output_dir
|
102 |
-
os.makedirs(output_dir, exist_ok=True)
|
103 |
-
|
104 |
-
device = args.device
|
105 |
-
if not torch.cuda.is_available():
|
106 |
-
device = "cpu"
|
107 |
-
|
108 |
-
timer.start("Initializing model")
|
109 |
-
model = TSR.from_pretrained(
|
110 |
-
args.pretrained_model_name_or_path,
|
111 |
-
config_name="config.yaml",
|
112 |
-
weight_name="model.ckpt",
|
113 |
-
)
|
114 |
-
model.renderer.set_chunk_size(args.chunk_size)
|
115 |
-
model.to(device)
|
116 |
-
timer.end("Initializing model")
|
117 |
-
|
118 |
-
timer.start("Processing images")
|
119 |
-
images = []
|
120 |
-
|
121 |
-
if args.no_remove_bg:
|
122 |
-
rembg_session = None
|
123 |
-
else:
|
124 |
-
rembg_session = rembg.new_session()
|
125 |
-
|
126 |
-
for i, image_path in enumerate(args.image):
|
127 |
-
if args.no_remove_bg:
|
128 |
-
image = np.array(Image.open(image_path).convert("RGB"))
|
129 |
-
else:
|
130 |
-
image = remove_background(Image.open(image_path), rembg_session)
|
131 |
-
image = resize_foreground(image, args.foreground_ratio)
|
132 |
-
image = np.array(image).astype(np.float32) / 255.0
|
133 |
-
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
|
134 |
-
image = Image.fromarray((image * 255.0).astype(np.uint8))
|
135 |
-
if not os.path.exists(os.path.join(output_dir, str(i))):
|
136 |
-
os.makedirs(os.path.join(output_dir, str(i)))
|
137 |
-
image.save(os.path.join(output_dir, str(i), f"input.png"))
|
138 |
-
images.append(image)
|
139 |
-
timer.end("Processing images")
|
140 |
-
|
141 |
-
for i, image in enumerate(images):
|
142 |
-
logging.info(f"Running image {i + 1}/{len(images)} ...")
|
143 |
-
|
144 |
-
timer.start("Running model")
|
145 |
-
with torch.no_grad():
|
146 |
-
scene_codes = model([image], device=device)
|
147 |
-
timer.end("Running model")
|
148 |
-
|
149 |
-
if args.render:
|
150 |
-
timer.start("Rendering")
|
151 |
-
render_images = model.render(scene_codes, n_views=30, return_type="pil")
|
152 |
-
for ri, render_image in enumerate(render_images[0]):
|
153 |
-
render_image.save(os.path.join(output_dir, str(i), f"render_{ri:03d}.png"))
|
154 |
-
save_video(
|
155 |
-
render_images[0], os.path.join(output_dir, str(i), f"render.mp4"), fps=30
|
156 |
-
)
|
157 |
-
timer.end("Rendering")
|
158 |
-
|
159 |
-
timer.start("Exporting mesh")
|
160 |
-
meshes = model.extract_mesh(scene_codes, resolution=args.mc_resolution)
|
161 |
-
meshes[0].export(os.path.join(output_dir, str(i), f"mesh.{args.model_save_format}"))
|
162 |
-
timer.end("Exporting mesh")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|