Spaces:
Paused
Paused
# Note: this code is being actively modified by justheuristic. If you want to change anything about it, please warn me. | |
from __future__ import annotations | |
import asyncio | |
import random | |
from typing import Any, AsyncIterator, Dict, Optional | |
import torch | |
from hivemind.compression import deserialize_torch_tensor, serialize_torch_tensor | |
from hivemind.moe.client.expert import RemoteExpert, RemoteExpertWorker | |
from hivemind.moe.expert_uid import ExpertInfo | |
from hivemind.p2p import P2P, StubBase | |
from hivemind.proto import runtime_pb2 | |
from hivemind.utils import anext, get_logger, nested_flatten, use_hivemind_log_handler | |
from src.data_structures import RemoteModuleInfo | |
from src.dht_utils import ModuleUID | |
from src.server.handler import TransformerConnectionHandler | |
use_hivemind_log_handler("in_root_logger") | |
logger = get_logger(__file__) | |
class RemoteTransformerBlock(RemoteExpert): | |
"""A class that interacts with a remote module on a specific server for forward/backward or inference""" | |
def __init__(self, peers_info: RemoteModuleInfo, p2p: P2P): | |
peer_info = ExpertInfo(peers_info.uid, random.choice(list(peers_info.peer_ids))) # TODO replace this | |
super().__init__(peer_info, p2p) | |
def stub(self) -> StubBase: | |
return TransformerConnectionHandler.get_stub(self.p2p, self.peer_id) | |
def forward(self, inputs: torch.Tensor, **kwargs): | |
for k, v in kwargs.items(): | |
assert v is None or v is False, f"Extra keyword arguments are not yet supported (got {k} = {v})" | |
return super().forward(inputs) | |
def inference_session(self) -> RemoteTransformerBlockInferenceSession: | |
"""Initialize a new inference session with the specified remote server""" | |
_ = self.info # create _info manually since the built-in property will not work inside RemoteExpertWorker | |
return RemoteExpertWorker.run_coroutine(RemoteTransformerBlockInferenceSession._create(self)) | |
def begin_inference_session(self): | |
logger.warning("beging_inference_session was renamed to just inference_session") | |
return self.inference_session() | |
class RemoteTransformerBlockInferenceSession: | |
"""An interface to a single multi-step *inference* session for a specific remote module with a specific server""" | |
def __init__(self, uid: ModuleUID, info: Dict[str, Any], inputs_queue: asyncio.Queue, outputs_aiter: AsyncIterator): | |
self.uid, self.info = uid, info | |
# warning: this code manages async objects that are only usable inside RemoteExpertWorker's background thread; | |
# using them in any other EventLoop may cause side-effects including, headaches, diarrhea, and loss of sleep | |
self._inputs_queue: asyncio.Queue[runtime_pb2.ExpertRequest] = inputs_queue | |
self._outputs_stream: AsyncIterator[runtime_pb2.ExpertResponse] = outputs_aiter | |
self.stepped = False | |
self.closed = False | |
async def _create( | |
cls, remote_module: RemoteTransformerBlock, timeout: Optional[float] = None | |
) -> RemoteTransformerBlockInferenceSession: | |
"""Create a new session for a given remote module. This code is meant to be run inside RemoteExpertWorker""" | |
inputs_queue = asyncio.Queue() | |
outputs_stream = await remote_module.stub.rpc_inference( | |
cls._read_inputs_from_queue(inputs_queue, timeout), timeout=timeout | |
) | |
return cls(remote_module.uid, remote_module.info, inputs_queue, outputs_stream) | |
async def _read_inputs_from_queue(queue: asyncio.Queue, timeout: Optional[float]) -> AsyncIterator: | |
while True: | |
next_input_message = await asyncio.wait_for(queue.get(), timeout) | |
yield next_input_message | |
if not next_input_message.uid and not next_input_message.tensors: | |
break # this message means "done sending" | |
def step(self, new_hidden_states: torch.Tensor): | |
"""Inference step: send a chunk of input tensors and receive a chunk of outputs""" | |
if self.closed: | |
raise Exception("Session is closed, cannot perform step") | |
# serialize inputs and put them into the queue | |
inputs = (new_hidden_states,) | |
outputs_serialized = RemoteExpertWorker.run_coroutine( | |
self._step( | |
runtime_pb2.ExpertRequest( | |
uid=self.uid, | |
tensors=[ | |
serialize_torch_tensor(tensor, proto.compression) | |
for tensor, proto in zip(inputs, nested_flatten(self.info["forward_schema"])) | |
], | |
) | |
) | |
) | |
outputs = list(map(deserialize_torch_tensor, outputs_serialized.tensors)) | |
assert outputs[0].shape == inputs[0].shape, f"expected outputs[0] to be hidden states but got {outputs[0]}" | |
return outputs[0] | |
async def _step(self, inputs_serialized: runtime_pb2.ExpertRequest) -> runtime_pb2.ExpertResponse: | |
"""Inference step on serialized data. This code is meant to be run inside RemoteExpertWorker""" | |
await self._inputs_queue.put(inputs_serialized) | |
self.stepped = True | |
return await anext(self._outputs_stream) | |
def close(self): | |
"""Finish a given inference session, close the underlying connection""" | |
if self._outputs_stream is None: | |
return # already closed | |
RemoteExpertWorker.run_coroutine(self._aclose_stream()) | |
self._outputs_stream = self._inputs_queue = None | |
self.closed = True | |
async def _aclose_stream(self): | |
"""Close the inference session. This code is meant to be run inside RemoteExpertWorker""" | |
if self._outputs_stream is None: | |
return # already closed | |
if self.stepped: | |
await self._inputs_queue.put(runtime_pb2.ExpertRequest()) # empty request will trigger end of session | |
try: | |
await anext(self._outputs_stream) | |
except StopAsyncIteration: | |
pass | |
def __del__(self): | |
self.close() | |
def __enter__(self): | |
assert not self.closed | |
return self | |
def __exit__(self, *exc_details): | |
self.close() | |