Spaces:
Paused
Paused
""" | |
Utility operations used in the the BLOOM model | |
Based on https://github.com/huggingface/transformers/commit/ca2a55e9dfb245527b5e1c954fec6ffbb7aef07b | |
See commit history for authorship. | |
""" | |
import math | |
import torch | |
import torch.autograd | |
import torch.nn.functional as F | |
from torch import nn | |
def split_tensor_along_last_dim(tensor, num_partitions, contiguous_split_chunks=False): | |
"""Split a tensor along its last dimension. | |
Args: | |
tensor: ([`torch.tensor`], *required*): | |
input tensor to split | |
num_partitions ([`int`], *required*): | |
number of partitions to split the tensor | |
contiguous_split_chunks ([`bool`], *optional*, default=`False`):: | |
If True, make each chunk contiguous in memory. | |
""" | |
# Get the size and dimension. | |
last_dim = tensor.dim() - 1 | |
numerator, denominator = tensor.size()[last_dim], num_partitions | |
if not (numerator % denominator == 0): | |
raise ValueError(f"{numerator} is not divisible by {denominator}") | |
last_dim_size = numerator // denominator | |
# Split. | |
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim) | |
# Note: torch.split does not create contiguous tensors by default. | |
if contiguous_split_chunks: | |
return tuple(chunk.contiguous() for chunk in tensor_list) | |
return tensor_list | |
def attention_mask_func(attention_scores, attention_mask, causal_mask): | |
if attention_mask.dtype == torch.bool: | |
attention_mask_bool = ~attention_mask | |
else: | |
attention_mask_bool = (1 - attention_mask).bool() | |
query_length, key_length, n_heads = attention_scores.size(2), attention_scores.size(3), attention_scores.size(1) | |
padded_causal_mask = ( | |
attention_mask_bool[:, None, key_length - query_length : key_length, None] | |
+ ~causal_mask[:, :, key_length - query_length : key_length, :key_length] | |
).bool() | |
padded_causal_mask = padded_causal_mask + attention_mask_bool[:, None, None, :key_length].bool() | |
# Make use of floats | |
return ( | |
attention_scores.masked_fill_(padded_causal_mask.expand(-1, n_heads, -1, -1), -10000.0), | |
padded_causal_mask, | |
) | |
def build_alibi_tensor( | |
max_seq_len: int, n_head: int, dtype: torch.dtype = torch.bfloat16, device: torch.device = torch.device("cpu") | |
) -> torch.Tensor: | |
""" | |
Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it | |
relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value | |
`softmax(l+a) = softmax(l)`. Based on | |
https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742 | |
Args: | |
Returns tensor shaped (n_head, 1, max_seq_len) | |
max_seq_len: (`int`, *required*): | |
max sequence length | |
n_head: (`int`, *required*): | |
number of heads | |
dtype: (`torch.dtype`, *optional*, default=`torch.bfloat16`): | |
dtype of the output tensor | |
device: (`torch.device`, *optional*, default=`torch.device('cpu')`): | |
device of the output alibi tensor | |
""" | |
closest_power_of_2 = 2 ** math.floor(math.log2(n_head)) | |
base = torch.tensor(2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=device, dtype=torch.float32) | |
powers = torch.arange(1, 1 + closest_power_of_2, device=device, dtype=torch.int32) | |
slopes = torch.pow(base, powers) | |
if closest_power_of_2 != n_head: | |
extra_base = torch.tensor( | |
2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=device, dtype=torch.float32 | |
) | |
num_remaining_heads = min(closest_power_of_2, n_head - closest_power_of_2) | |
extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=device, dtype=torch.int32) | |
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0) | |
lengths = torch.arange(max_seq_len, device=device, dtype=torch.int32) | |
return (slopes.view(-1, 1, 1) * lengths.view(1, 1, -1)).to(dtype) | |
def pre_process_alibi_for_pad(alibi: torch.Tensor, attention_mask: torch.Tensor): | |
""" | |
Args: | |
Pre-process the alibi tensor for padding. | |
alibi: ([`torch.tensor`], *required*): | |
alibi tensor to pre-process | |
attention_mask: ([`torch.tensor`], *required*): | |
attention mask to pre-process | |
""" | |
assert attention_mask.shape.ndim == 2, "mask should be [batch_size, seq_length]" | |
unpadded_indices = torch.relu(attention_mask.cumsum(dim=1) - 1) | |
# ^-- [batch, max_len], values correspond to element indices after removing padding | |
# We shift the alibi tensor + replace all the values where attention_mask==0.0 by 0 | |
alibi = alibi.take_along_dim(unpadded_indices.unsqueeze(0), -1) * attention_mask.unsqueeze(0) | |
return alibi.reshape(alibi.shape[0] * alibi.shape[1], 1, -1) | |
def dropout_add(x, residual, prob, training): | |
""" | |
Dropout add function | |
Args: | |
x (`torch.tensor`, *required*): | |
input tensor | |
residual (`torch.tensor`, *rquired*): | |
esidual tensor | |
prob (`float`, *required*): | |
dropout probability | |
training (`bool`, *required*): | |
training mode | |
""" | |
out = nn.functional.dropout(x, p=prob, training=training) | |
out = residual + out | |
return out | |
def bloom_gelu_forward(x): | |
""" | |
Custom bias GELU function. Adapted from Megatron-DeepSpeed code. Here we use a simple implementation (inference) to | |
make the model jitable. | |
Args: | |
x (`torch.tensor`, *required*): | |
input hidden states | |
""" | |
return x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))) | |
def bloom_gelu_back(g, x): | |
""" | |
gradient of tanh approximation of gelu gradient of actual gelu is: 0.5 * (1. + torch.erf(x * 0.70710678)) + | |
0.3989423 * x * torch.exp(-0.5 * x * x) | |
Args: | |
g (`torch.tensor`, *required*): | |
gradient output tensor | |
x (`torch.tensor`, *required*): | |
input tensor | |
""" | |
x = x[0] # x is a tuple of 1 element, needs to unpack it first | |
tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)) | |
# sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243 | |
ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out) | |
return ff * g | |
class GeLUFunction(torch.autograd.Function): | |
def forward(ctx, input): | |
ctx.save_for_backward(input) | |
return bloom_gelu_forward(input) | |
def backward(ctx, grad_output): | |
input = ctx.saved_tensors | |
tmp = bloom_gelu_back(grad_output, input) | |
return tmp | |
class BloomGelu(nn.Module): | |
""" | |
BloomBiasGelu wrapper function that make use of the simple function on inference mode to make the model | |
torchscriptable and use the autograd function in training mode to get the accurate results of the gradients Partly | |
copied from Megatron-DeepSpeed code and adapted for our needs | |
See here why autograd functions are not torchscriptable: https://github.com/pytorch/pytorch/issues/22329 | |
""" | |
def __init__(self): | |
super().__init__() | |
def forward(self, x): | |
if self.training: | |
return GeLUFunction.apply(x) | |
else: | |
return bloom_gelu_forward(x) | |
class BloomScaledSoftmax(nn.Module): | |
""" | |
fused operation: scaling + mask + softmax | |
Args: | |
input_in_fp16 (`bool`, *required*): | |
flag to indicate if input in fp16 data format. | |
input_in_bf16 (`bool`, *required*): | |
flag to indicate if input in bf16 data format. | |
scaled_masked_softmax_fusion (`bool`, *required*): | |
flag to indicate user want to use softmax fusion | |
mask_func (`function`, *required*): | |
mask function to be applied. | |
softmax_in_fp32 (`bool`, *required*): | |
if true, softmax in performed at fp32 precision. | |
scale (`float`, *required*): | |
scaling factor used in input tensor scaling. | |
""" | |
def __init__(self, scaled_masked_softmax_fusion, mask_func, softmax_in_fp32, scale): | |
super().__init__() | |
self.scaled_masked_softmax_fusion = scaled_masked_softmax_fusion | |
self.mask_func = mask_func | |
self.softmax_in_fp32 = softmax_in_fp32 | |
self.scale = scale | |
if not (self.scale is None or softmax_in_fp32): | |
raise ValueError("softmax should be in fp32 when scaled") | |
def forward(self, input, mask, max_positions): | |
input_dtype = input.dtype | |
input_in_16bit = input_dtype in [torch.float16, torch.bfloat16] | |
softmax_dtype = torch.float32 if self.softmax_in_fp32 else input_dtype | |
if self.scale is not None: | |
input = input * self.scale | |
if mask is None: | |
mask = torch.ones(input.shape[0], max_positions, dtype=torch.bool, device=input.device) | |
mask = mask.to(input.device) | |
causal_mask = ( | |
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)) | |
.view(1, 1, max_positions, max_positions) | |
.to(input.device) | |
) | |
mask_output, padded_causal_mask = self.mask_func(input, mask, causal_mask) | |
probs = F.softmax(mask_output, dim=-1, dtype=softmax_dtype) * (~padded_causal_mask) | |
if input_in_16bit and self.softmax_in_fp32: | |
probs = probs.to(dtype=input_dtype) | |
return probs | |