Spaces:
Paused
Paused
""" | |
Bloom intermediate layer | |
Based on https://github.com/huggingface/transformers/commit/ca2a55e9dfb245527b5e1c954fec6ffbb7aef07b | |
See commit history for authorship. | |
""" | |
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.quantized.dynamic.modules.linear | |
from src.bloom.ops import (BloomGelu, BloomScaledSoftmax, attention_mask_func, build_alibi_tensor, dropout_add, | |
pre_process_alibi_for_pad, split_tensor_along_last_dim) | |
class BloomAttention(nn.Module): | |
def __init__(self, config, layer_number=None): | |
super().__init__() | |
self.hidden_size = config.hidden_size | |
self.num_heads = config.n_head | |
self.head_dim = self.hidden_size // self.num_heads | |
self.split_size = self.hidden_size | |
self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32 | |
self.masked_softmax_fusion = config.masked_softmax_fusion | |
self.hidden_dropout = config.hidden_dropout | |
if self.head_dim * self.num_heads != self.hidden_size: | |
raise ValueError( | |
f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:" | |
f" {self.num_heads})." | |
) | |
# Layer-wise attention scaling | |
self.layer_number = max(1, layer_number) | |
self.norm_factor = math.sqrt(self.head_dim) * self.layer_number | |
# Scaled Softmax | |
self.scale_mask_softmax = BloomScaledSoftmax( | |
self.masked_softmax_fusion, | |
attention_mask_func, | |
self.attention_softmax_in_fp32, | |
self.layer_number, | |
) | |
self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=True) | |
self.dense = nn.Linear(self.hidden_size, self.hidden_size) | |
self.attention_dropout = nn.Dropout(config.attention_dropout) | |
def forward( | |
self, | |
hidden_states, | |
residual, | |
layer_past=None, | |
attention_mask=None, | |
alibi=None, | |
head_mask=None, | |
use_cache=False, | |
output_attentions=False, | |
): | |
if alibi is None: | |
current_sequence_length = hidden_states.shape[1] + (0 if layer_past is None else layer_past[0].shape[1]) | |
alibi = build_alibi_tensor( | |
current_sequence_length, n_head=self.num_heads, dtype=hidden_states.dtype, device=hidden_states.device | |
) | |
# hidden_states: [batch_size, seq_length, hidden_size] | |
# apply preprocessing if the input is padded | |
if attention_mask is not None: | |
alibi = pre_process_alibi_for_pad(alibi, attention_mask) | |
# otherwise repeat alibi tensor with the batch size | |
else: | |
alibi = alibi.repeat(hidden_states.shape[0], 1, 1) | |
mixed_x_layer = self.query_key_value(hidden_states) | |
# [batch_size, seq_length, 3 x hidden_size] --> [batch_size, seq_length, num_heads, 3 x head_dim] | |
new_tensor_shape = mixed_x_layer.size()[:-1] + (self.num_heads, 3 * self.head_dim) | |
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape) | |
# [batch_size, seq_length, num_heads, 3 x head_dim] --> 3 [batch_size, seq_length, num_heads, head_dim] | |
(query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3) | |
if layer_past is not None: | |
past_key, past_value = layer_past | |
key_layer = torch.cat((past_key.type_as(key_layer), key_layer), dim=1) | |
value_layer = torch.cat((past_value.type_as(value_layer), value_layer), dim=1) | |
if use_cache is True: | |
present = (key_layer, value_layer) | |
else: | |
present = None | |
# [batch_size, head_dim, q_length, k_length] | |
output_size = (query_layer.size(0), query_layer.size(2), query_layer.size(1), key_layer.size(1)) | |
# [batch_size, q_length, num_heads, head_dim] -> [q_length, batch_size * num_heads, head_dim] | |
query_layer = query_layer.transpose(1, 0).reshape(output_size[2], output_size[0] * output_size[1], -1) | |
# [batch_size, k_length, num_heads, head_dim] -> [k_length, batch_size * num_heads, head_dim] | |
key_layer = key_layer.transpose(1, 0).reshape(output_size[3], output_size[0] * output_size[1], -1) | |
# Raw attention scores. [batch_size * num_heads, q_length, k_length] | |
beta = 1.0 / self.layer_number | |
matmul_result = torch.baddbmm( | |
alibi, | |
query_layer.transpose(1, 0), | |
key_layer.transpose(1, 0).transpose(1, 2), | |
beta=beta, | |
alpha=(1.0 / self.norm_factor), | |
) | |
# change view to [batch_size, num_heads, q_length, k_length] | |
attention_scores = matmul_result.view(*output_size) | |
# attention scores and attention mask [b, np, sq, sk] | |
max_positions = max(attention_scores.shape[-1], attention_scores.shape[-2]) | |
attention_probs = self.scale_mask_softmax(attention_scores, attention_mask, max_positions).to(value_layer.dtype) | |
attention_probs = self.attention_dropout(attention_probs) | |
if head_mask is not None: | |
attention_probs = attention_probs * head_mask | |
# context layer shape: [batch_size, num_heads, q_length, head_dim] | |
output_size = (value_layer.size(0), value_layer.size(2), query_layer.size(0), value_layer.size(3)) | |
# change view [k_length, batch_size x num_heads, head_dim] | |
value_layer = value_layer.transpose(1, 0).reshape(value_layer.size(1), output_size[0] * output_size[1], -1) | |
# change view [batch_size x num_heads, q_length, k_length] | |
attention_probs_reshaped = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1) | |
# matmul: [batch_size * num_heads, q_length, head_dim] | |
context_layer = torch.bmm(attention_probs_reshaped, value_layer.transpose(0, 1)) | |
# change view [batch_size, num_heads, q_length, head_dim] | |
context_layer = context_layer.view(*output_size) | |
# [batchs_size, num_heads, q_length, head_dim] --> [q_length, batch_size, num_heads, head_dim] | |
context_layer = context_layer.permute(2, 0, 1, 3).contiguous() | |
# [q_length, batch_size, num_heads, head_dim] --> [q_length, batch_size, hidden_size] | |
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size,) | |
context_layer = context_layer.view(*new_context_layer_shape) | |
# Output. [q_length, batch_size, hidden_size] | |
# aggregate results across tp ranks. See here: https://github.com/pytorch/pytorch/issues/76232 | |
output_tensor = self.dense(context_layer) | |
output = output_tensor.transpose(1, 0) | |
output = dropout_add(output, residual, self.hidden_dropout, self.training) | |
outputs = (output, present) | |
if output_attentions: | |
outputs += (attention_probs,) | |
return outputs | |
class BloomMLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.hidden_size = config.hidden_size | |
self.dense_h_to_4h = nn.Linear(self.hidden_size, 4 * self.hidden_size) | |
self.dense_4h_to_h = nn.Linear(4 * self.hidden_size, self.hidden_size) | |
self.hidden_dropout = config.hidden_dropout | |
self.gelu_impl = BloomGelu() | |
def forward(self, hidden_states, residual): | |
hidden_states = self.gelu_impl(self.dense_h_to_4h(hidden_states)) | |
intermediate_output = self.dense_4h_to_h(hidden_states) | |
output = dropout_add(intermediate_output, residual, self.hidden_dropout, self.training) | |
return output | |
class BloomBlock(nn.Module): | |
def __init__(self, config, layer_number=None): | |
super().__init__() | |
self.hidden_size = config.hidden_size | |
self.input_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_epsilon) | |
self.n_head = config.n_head | |
self.self_attention = BloomAttention(config, layer_number=layer_number) | |
self.post_attention_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_epsilon) | |
self.mlp = BloomMLP(config) | |
self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm | |
self.hidden_dropout = config.hidden_dropout | |
def forward( | |
self, | |
hidden_states, | |
layer_past=None, | |
attention_mask=None, | |
head_mask=None, | |
use_cache=False, | |
output_attentions=False, | |
alibi=None, | |
): | |
# hidden_states: [batch_size, seq_length, hidden_size] | |
# Layer norm at the beginning of the transformer layer. | |
layernorm_output = self.input_layernorm(hidden_states) | |
# Layer norm post the self attention. | |
if self.apply_residual_connection_post_layernorm: | |
residual = layernorm_output | |
else: | |
residual = hidden_states | |
# Self attention. | |
attn_outputs = self.self_attention( | |
layernorm_output, | |
residual, | |
layer_past=layer_past, | |
attention_mask=attention_mask, | |
alibi=alibi, | |
head_mask=head_mask, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
) | |
attention_output = attn_outputs[0] | |
outputs = attn_outputs[1:] | |
layernorm_output = self.post_attention_layernorm(attention_output) | |
# Get residual | |
if self.apply_residual_connection_post_layernorm: | |
residual = layernorm_output | |
else: | |
residual = attention_output | |
# MLP. | |
output = self.mlp(layernorm_output, residual) | |
if use_cache: | |
outputs = (output,) + outputs | |
else: | |
outputs = (output,) + outputs[1:] | |
return outputs # hidden_states, present, attentions | |