João Pedro commited on
Commit
63eb0c6
·
1 Parent(s): 392dd2d

remove unnecessary comments

Browse files
Files changed (1) hide show
  1. app.py +1 -7
app.py CHANGED
@@ -31,22 +31,19 @@ model = LayoutLMv3ForSequenceClassification.from_pretrained(
31
 
32
  st.title("Document Classification with LayoutLMv3")
33
 
34
- # File uploader for PDFs, JPGs, and PNGs
35
  uploaded_file = st.file_uploader(
36
  "Upload Document", type=["pdf", "jpg", "png"], accept_multiple_files=False
37
  )
38
 
39
  if uploaded_file:
40
- # for uploaded_file in uploaded_files:
41
  if uploaded_file.type == "application/pdf":
42
  images = convert_from_bytes(uploaded_file.getvalue())
43
  else:
44
  images = [Image.open(uploaded_file)]
45
 
46
- # Process each image for classification
47
  for i, image in enumerate(images):
48
  st.image(image, caption=f'Uploaded Image {i}', use_container_width=True)
49
- # Prepare image for model input
50
  encoding = processor(
51
  image,
52
  return_tensors="pt",
@@ -56,10 +53,8 @@ if uploaded_file:
56
  outputs = model(**encoding)
57
  prediction = outputs.logits.argmax(-1)[0].item()
58
 
59
- # Display predictions (you may want to map indices to labels)
60
  st.write(f"Prediction: {id2label[prediction]}")
61
 
62
- # User feedback section
63
  feedback = st.radio(
64
  "Is the classification correct?", ("Yes", "No"),
65
  key=f'prediction-{i}'
@@ -68,4 +63,3 @@ if uploaded_file:
68
  correct_label = st.selectbox(
69
  "Please select the correct label:", labels
70
  )
71
- # Here you can implement logic to store or process feedback
 
31
 
32
  st.title("Document Classification with LayoutLMv3")
33
 
 
34
  uploaded_file = st.file_uploader(
35
  "Upload Document", type=["pdf", "jpg", "png"], accept_multiple_files=False
36
  )
37
 
38
  if uploaded_file:
 
39
  if uploaded_file.type == "application/pdf":
40
  images = convert_from_bytes(uploaded_file.getvalue())
41
  else:
42
  images = [Image.open(uploaded_file)]
43
 
 
44
  for i, image in enumerate(images):
45
  st.image(image, caption=f'Uploaded Image {i}', use_container_width=True)
46
+
47
  encoding = processor(
48
  image,
49
  return_tensors="pt",
 
53
  outputs = model(**encoding)
54
  prediction = outputs.logits.argmax(-1)[0].item()
55
 
 
56
  st.write(f"Prediction: {id2label[prediction]}")
57
 
 
58
  feedback = st.radio(
59
  "Is the classification correct?", ("Yes", "No"),
60
  key=f'prediction-{i}'
 
63
  correct_label = st.selectbox(
64
  "Please select the correct label:", labels
65
  )