Spaces:
Runtime error
Runtime error
import os | |
import torch | |
from einops import repeat | |
from omegaconf import ListConfig | |
import ldm.models.diffusion.ddpm | |
import ldm.models.diffusion.ddim | |
import ldm.models.diffusion.plms | |
from ldm.models.diffusion.ddpm import LatentDiffusion | |
from ldm.models.diffusion.plms import PLMSSampler | |
from ldm.models.diffusion.ddim import DDIMSampler, noise_like | |
from ldm.models.diffusion.sampling_util import norm_thresholding | |
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False, | |
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, | |
unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None, dynamic_threshold=None): | |
b, *_, device = *x.shape, x.device | |
def get_model_output(x, t): | |
if unconditional_conditioning is None or unconditional_guidance_scale == 1.: | |
e_t = self.model.apply_model(x, t, c) | |
else: | |
x_in = torch.cat([x] * 2) | |
t_in = torch.cat([t] * 2) | |
if isinstance(c, dict): | |
assert isinstance(unconditional_conditioning, dict) | |
c_in = dict() | |
for k in c: | |
if isinstance(c[k], list): | |
c_in[k] = [ | |
torch.cat([unconditional_conditioning[k][i], c[k][i]]) | |
for i in range(len(c[k])) | |
] | |
else: | |
c_in[k] = torch.cat([unconditional_conditioning[k], c[k]]) | |
else: | |
c_in = torch.cat([unconditional_conditioning, c]) | |
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2) | |
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond) | |
if score_corrector is not None: | |
assert self.model.parameterization == "eps" | |
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs) | |
return e_t | |
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas | |
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev | |
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas | |
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas | |
def get_x_prev_and_pred_x0(e_t, index): | |
# select parameters corresponding to the currently considered timestep | |
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) | |
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) | |
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) | |
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device) | |
# current prediction for x_0 | |
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() | |
if quantize_denoised: | |
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) | |
if dynamic_threshold is not None: | |
pred_x0 = norm_thresholding(pred_x0, dynamic_threshold) | |
# direction pointing to x_t | |
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t | |
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature | |
if noise_dropout > 0.: | |
noise = torch.nn.functional.dropout(noise, p=noise_dropout) | |
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise | |
return x_prev, pred_x0 | |
e_t = get_model_output(x, t) | |
if len(old_eps) == 0: | |
# Pseudo Improved Euler (2nd order) | |
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index) | |
e_t_next = get_model_output(x_prev, t_next) | |
e_t_prime = (e_t + e_t_next) / 2 | |
elif len(old_eps) == 1: | |
# 2nd order Pseudo Linear Multistep (Adams-Bashforth) | |
e_t_prime = (3 * e_t - old_eps[-1]) / 2 | |
elif len(old_eps) == 2: | |
# 3nd order Pseudo Linear Multistep (Adams-Bashforth) | |
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12 | |
elif len(old_eps) >= 3: | |
# 4nd order Pseudo Linear Multistep (Adams-Bashforth) | |
e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24 | |
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index) | |
return x_prev, pred_x0, e_t | |
def do_inpainting_hijack(): | |
# p_sample_plms is needed because PLMS can't work with dicts as conditionings | |
ldm.models.diffusion.plms.PLMSSampler.p_sample_plms = p_sample_plms | |