Spaces:
Runtime error
Runtime error
import torch | |
import numpy as np | |
from PIL import ImageOps | |
import math | |
from .animation import sample_to_cv2 | |
import cv2 | |
deforum_noise_gen = torch.Generator(device='cpu') | |
# 2D Perlin noise in PyTorch https://gist.github.com/vadimkantorov/ac1b097753f217c5c11bc2ff396e0a57 | |
def rand_perlin_2d(shape, res, fade = lambda t: 6*t**5 - 15*t**4 + 10*t**3): | |
delta = (res[0] / shape[0], res[1] / shape[1]) | |
d = (shape[0] // res[0], shape[1] // res[1]) | |
grid = torch.stack(torch.meshgrid(torch.arange(0, res[0], delta[0]), torch.arange(0, res[1], delta[1]), indexing='ij'), dim = -1) % 1 | |
angles = 2*math.pi*torch.rand(res[0]+1, res[1]+1, generator=deforum_noise_gen) | |
gradients = torch.stack((torch.cos(angles), torch.sin(angles)), dim = -1) | |
tile_grads = lambda slice1, slice2: gradients[slice1[0]:slice1[1], slice2[0]:slice2[1]].repeat_interleave(d[0], 0).repeat_interleave(d[1], 1) | |
dot = lambda grad, shift: (torch.stack((grid[:shape[0],:shape[1],0] + shift[0], grid[:shape[0],:shape[1], 1] + shift[1] ), dim = -1) * grad[:shape[0], :shape[1]]).sum(dim = -1) | |
n00 = dot(tile_grads([0, -1], [0, -1]), [0, 0]) | |
n10 = dot(tile_grads([1, None], [0, -1]), [-1, 0]) | |
n01 = dot(tile_grads([0, -1],[1, None]), [0, -1]) | |
n11 = dot(tile_grads([1, None], [1, None]), [-1,-1]) | |
t = fade(grid[:shape[0], :shape[1]]) | |
return math.sqrt(2) * torch.lerp(torch.lerp(n00, n10, t[..., 0]), torch.lerp(n01, n11, t[..., 0]), t[..., 1]) | |
def rand_perlin_2d_octaves(shape, res, octaves=1, persistence=0.5): | |
noise = torch.zeros(shape) | |
frequency = 1 | |
amplitude = 1 | |
for _ in range(int(octaves)): | |
noise += amplitude * rand_perlin_2d(shape, (frequency*res[0], frequency*res[1])) | |
frequency *= 2 | |
amplitude *= persistence | |
return noise | |
def condition_noise_mask(noise_mask, invert_mask = False): | |
if invert_mask: | |
noise_mask = ImageOps.invert(noise_mask) | |
noise_mask = np.array(noise_mask.convert("L")) | |
noise_mask = noise_mask.astype(np.float32) / 255.0 | |
noise_mask = np.around(noise_mask, decimals=0) | |
noise_mask = torch.from_numpy(noise_mask) | |
#noise_mask = torch.round(noise_mask) | |
return noise_mask | |
def add_noise(sample, noise_amt: float, seed: int, noise_type: str, noise_args, noise_mask = None, invert_mask = False): | |
deforum_noise_gen.manual_seed(seed) # Reproducibility | |
sample2dshape = (sample.shape[0], sample.shape[1]) #sample is cv2, so height - width | |
noise = torch.randn((sample.shape[2], sample.shape[0], sample.shape[1]), generator=deforum_noise_gen) # White noise | |
if noise_type == 'perlin': | |
# rand_perlin_2d_octaves is between -1 and 1, so we need to shift it to be between 0 and 1 | |
# print(sample.shape) | |
noise = noise * ((rand_perlin_2d_octaves(sample2dshape, (int(noise_args[0]), int(noise_args[1])), octaves=noise_args[2], persistence=noise_args[3]) + torch.ones(sample2dshape)) / 2) | |
if noise_mask is not None: | |
noise_mask = condition_noise_mask(noise_mask, invert_mask) | |
noise_to_add = sample_to_cv2(noise * noise_mask) | |
else: | |
noise_to_add = sample_to_cv2(noise) | |
sample = cv2.addWeighted(sample, 1-noise_amt, noise_to_add, noise_amt, 0) | |
return sample | |