Terry Zhuo
commited on
Commit
•
6e2a72a
1
Parent(s):
024b141
update
Browse files- src/display/about.py +1 -1
- src/populate.py +1 -1
src/display/about.py
CHANGED
@@ -20,7 +20,7 @@ BigCodeBench is the first benchmark that meets all three expectations. It is an
|
|
20 |
|
21 |
### Benchamrks & Prompts
|
22 |
The dataset has 2 variants:
|
23 |
-
1. `BigCodeBench-Complete`: _Code Completion based on the structured docstrings_.
|
24 |
1. `BigCodeBench-Instruct`: _Code Generation based on the NL-oriented instructions_.
|
25 |
|
26 |
Figure below shows the example of `Complete` vs `Instruct` prompt. For `Instruct`, we only focus on instruction-tuned LLMs.
|
|
|
20 |
|
21 |
### Benchamrks & Prompts
|
22 |
The dataset has 2 variants:
|
23 |
+
1. `BigCodeBench-Complete`: _Code Completion based on the structured long-context docstrings_.
|
24 |
1. `BigCodeBench-Instruct`: _Code Generation based on the NL-oriented instructions_.
|
25 |
|
26 |
Figure below shows the example of `Complete` vs `Instruct` prompt. For `Instruct`, we only focus on instruction-tuned LLMs.
|
src/populate.py
CHANGED
@@ -45,6 +45,6 @@ def get_leaderboard_df(leaderboard_dataset: Dataset, cols: list):
|
|
45 |
df[AutoEvalColumn.average.name] = df.apply(lambda x: round((x[AutoEvalColumn.complete.name] + x[AutoEvalColumn.instruct.name]) / 2, 1) if not pd.isna(x[AutoEvalColumn.complete.name]) and not pd.isna(x[AutoEvalColumn.instruct.name]) else None, axis=1)
|
46 |
df[AutoEvalColumn.size_range.name] = df[AutoEvalColumn.size.name].apply(lambda x: next((k for k, v in NUMERIC_INTERVALS.items() if x in v), "?"))
|
47 |
df = make_clickable_model(df, AutoEvalColumn.model.name, AutoEvalColumn.link.name)
|
48 |
-
df = df.sort_values(by=[AutoEvalColumn.
|
49 |
df = df[cols].round(decimals=2)
|
50 |
return df
|
|
|
45 |
df[AutoEvalColumn.average.name] = df.apply(lambda x: round((x[AutoEvalColumn.complete.name] + x[AutoEvalColumn.instruct.name]) / 2, 1) if not pd.isna(x[AutoEvalColumn.complete.name]) and not pd.isna(x[AutoEvalColumn.instruct.name]) else None, axis=1)
|
46 |
df[AutoEvalColumn.size_range.name] = df[AutoEvalColumn.size.name].apply(lambda x: next((k for k, v in NUMERIC_INTERVALS.items() if x in v), "?"))
|
47 |
df = make_clickable_model(df, AutoEvalColumn.model.name, AutoEvalColumn.link.name)
|
48 |
+
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
49 |
df = df[cols].round(decimals=2)
|
50 |
return df
|