|
|
|
from dataclasses import dataclass |
|
import plotly.graph_objects as go |
|
from transformers import AutoConfig |
|
import plotly.express as px |
|
import numpy as np |
|
|
|
|
|
@dataclass |
|
class ColumnContent: |
|
name: str |
|
type: str |
|
displayed_by_default: bool |
|
hidden: bool = False |
|
|
|
|
|
def fields(raw_class): |
|
return [ |
|
v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__" |
|
] |
|
|
|
|
|
@dataclass(frozen=True) |
|
class AutoEvalColumn: |
|
model_type_symbol = ColumnContent("type", "str", True) |
|
model = ColumnContent("model", "markdown", True) |
|
complete_score = ColumnContent("complete", "number", True) |
|
instruct_score = ColumnContent("instruct", "number", True) |
|
elo_mle = ColumnContent("elo_mle", "number", True) |
|
dummy = ColumnContent("model", "str", True) |
|
size = ColumnContent("size", "number", True) |
|
|
|
|
|
def model_hyperlink(link, model_name): |
|
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>' |
|
|
|
|
|
def make_clickable_names(df): |
|
df["model"] = df.apply( |
|
lambda row: model_hyperlink(row["link"], row["model"]), axis=1 |
|
) |
|
return df |
|
|
|
|
|
def plot_elo_mle(df): |
|
fig = px.scatter(df, x="model", y="rating", error_y="error_y", |
|
error_y_minus="error_y_minus", |
|
|
|
) |
|
fig.update_layout(xaxis_title="Model", |
|
yaxis_title="Rating", |
|
autosize=True, |
|
|
|
|
|
) |
|
return fig |
|
|
|
|
|
def plot_solve_rate(df, task, rows=30, cols=38): |
|
keys = df["task_id"] |
|
values = df["solve_rate"] |
|
|
|
values = np.array(values) |
|
|
|
n = len(values) |
|
if rows is None or cols is None: |
|
cols = int(math.sqrt(n)) |
|
rows = cols if cols * cols >= n else cols + 1 |
|
|
|
while rows * cols < n: |
|
cols += 1 |
|
|
|
values = np.pad(values, (0, rows * cols - n), 'constant', constant_values=np.nan).reshape((rows, cols)) |
|
keys = np.pad(keys, (0, rows * cols - n), 'constant', constant_values='').reshape((rows, cols)) |
|
|
|
hover_text = np.empty_like(values, dtype=object) |
|
for i in range(rows): |
|
for j in range(cols): |
|
if not np.isnan(values[i, j]): |
|
hover_text[i, j] = f"{keys[i, j]}<br>Solve Rate: {values[i, j]:.2f}" |
|
else: |
|
hover_text[i, j] = "NaN" |
|
|
|
upper_solve_rate = round(np.count_nonzero(values)/n*100, 2) |
|
fig = go.Figure(data=go.Heatmap( |
|
z=values, |
|
text=hover_text, |
|
hoverinfo='text', |
|
colorscale='teal', |
|
zmin=0, |
|
zmax=100 |
|
)) |
|
|
|
fig.update_layout( |
|
title=f'BigCodeBench-{task}<br><i>Lowest Upper Limit: {upper_solve_rate}%</i>', |
|
xaxis_nticks=cols, |
|
yaxis_nticks=rows, |
|
xaxis=dict(showticklabels=False), |
|
yaxis=dict(showticklabels=False), |
|
autosize=True, |
|
|
|
|
|
) |
|
|
|
return fig |
|
|
|
|
|
def styled_error(error): |
|
return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>" |
|
|
|
|
|
def styled_warning(warn): |
|
return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>" |
|
|
|
|
|
def styled_message(message): |
|
return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>" |
|
|
|
|
|
def has_no_nan_values(df, columns): |
|
return df[columns].notna().all(axis=1) |
|
|
|
|
|
def has_nan_values(df, columns): |
|
return df[columns].isna().any(axis=1) |
|
|
|
|
|
def is_model_on_hub(model_name: str, revision: str) -> bool: |
|
try: |
|
AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=False) |
|
return True, None |
|
|
|
except ValueError: |
|
return ( |
|
False, |
|
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.", |
|
) |
|
|
|
except Exception as e: |
|
print(f"Could not get the model config from the hub.: {e}") |
|
return False, "was not found on hub!" |