terryyz's picture
Update src/populate.py
b726b10 verified
raw
history blame
2.44 kB
import pathlib
import pandas as pd
from datasets import Dataset
from src.display.formatting import has_no_nan_values, make_clickable_model
from src.display.utils import AutoEvalColumn, EvalQueueColumn
from src.display.utils import load_json_data, column_map, type_map, moe_map, NUMERIC_INTERVALS
def get_evaluation_queue_df(save_path, cols):
"""Generate dataframes for pending, running, and finished evaluation entries."""
save_path = pathlib.Path(save_path)
all_evals = []
for path in save_path.rglob("*.json"):
data = load_json_data(path)
# Organizing data by status
status_map = {
"PENDING": ["PENDING", "RERUN"],
"RUNNING": ["RUNNING"],
"FINISHED": ["FINISHED", "PENDING_NEW_EVAL"],
}
status_dfs = {status: [] for status in status_map}
for eval_data in all_evals:
for status, extra_statuses in status_map.items():
if eval_data["status"] in extra_statuses:
status_dfs[status].append(eval_data)
return tuple(pd.DataFrame(status_dfs[status], columns=cols) for status in ["FINISHED", "RUNNING", "PENDING"])
def get_leaderboard_df(leaderboard_dataset: Dataset, cols: list):
"""Retrieve and process leaderboard data."""
all_data_json = leaderboard_dataset.to_dict()
num_items = leaderboard_dataset.num_rows
all_data_json_list = [{k: all_data_json[k][ix] for k in all_data_json.keys()} for ix in range(num_items)]
df = pd.DataFrame.from_records(all_data_json_list)
# replace df.moe true to false, false to true
# map column names
df = df.rename(columns=column_map)
df[AutoEvalColumn.moe.name] = df[AutoEvalColumn.moe.name].map(moe_map)
df[AutoEvalColumn.T.name] = df[AutoEvalColumn.type.name]
df[AutoEvalColumn.type.name] = df[AutoEvalColumn.type.name].map(type_map)
df[AutoEvalColumn.average.name] = df.apply(lambda x: round((x[AutoEvalColumn.complete.name] + x[AutoEvalColumn.instruct.name]) / 2, 1) if not pd.isna(x[AutoEvalColumn.complete.name]) and not pd.isna(x[AutoEvalColumn.instruct.name]) else None, axis=1)
df[AutoEvalColumn.size_range.name] = df[AutoEvalColumn.size.name].apply(lambda x: next((k for k, v in NUMERIC_INTERVALS.items() if x in v), "?"))
df = make_clickable_model(df, AutoEvalColumn.model.name, AutoEvalColumn.link.name)
df = df.sort_values(by=[AutoEvalColumn.complete.name], ascending=False)
df = df[cols].round(decimals=2)
return df