Spaces:
Paused
Paused
import os | |
import sys | |
import json | |
import torch | |
import logging | |
from typing import Dict, List, Optional | |
from transformers import Seq2SeqTrainingArguments | |
from transformers.trainer import TRAINER_STATE_NAME | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.generation.utils import LogitsProcessorList | |
from transformers.generation.logits_process import LogitsProcessor | |
from peft.utils.other import WEIGHTS_NAME | |
IGNORE_INDEX = -100 | |
VALUE_HEAD_FILE_NAME = "value_head.bin" | |
FINETUNING_ARGS_NAME = "finetuning_args.bin" | |
PREDICTION_FILE_NAME = "generated_predictions.txt" | |
logger = logging.getLogger(__name__) | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO, | |
handlers=[logging.StreamHandler(sys.stdout)] | |
) | |
def get_logger(name: str) -> logging.Logger: | |
return logging.getLogger(name) | |
class AverageMeter: | |
r""" | |
Computes and stores the average and current value. | |
""" | |
def __init__(self): | |
self.reset() | |
def reset(self): | |
self.val = 0 | |
self.avg = 0 | |
self.sum = 0 | |
self.count = 0 | |
def update(self, val, n=1): | |
self.val = val | |
self.sum += val * n | |
self.count += n | |
self.avg = self.sum / self.count | |
# Avoid runtime error in model.generate(do_sample=True). | |
# Borrowed from: https://huggingface.co/THUDM/chatglm-6b/blob/658202d88ac4bb782b99e99ac3adff58b4d0b813/modeling_chatglm.py#L54 | |
class InvalidScoreLogitsProcessor(LogitsProcessor): | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: | |
if torch.isnan(scores).any() or torch.isinf(scores).any(): | |
scores.zero_() | |
scores[..., 5] = 5e4 | |
return scores | |
def get_logits_processor() -> LogitsProcessorList: | |
logits_processor = LogitsProcessorList() | |
logits_processor.append(InvalidScoreLogitsProcessor()) | |
return logits_processor | |
# Includes: (1) cast the layernorm in fp32 (2) make output embedding layer require grads (3) upcast the lm_head to fp32 | |
# Inspired by: https://github.com/huggingface/peft/blob/c0209c35abbf88c63aa267800d98a8e212ed0a42/src/peft/utils/other.py#L35 | |
def prepare_model_for_training( | |
model: PreTrainedModel, | |
output_embedding_layer_name: Optional[str] = "lm_head", | |
use_gradient_checkpointing: Optional[bool] = True, | |
layer_norm_names: Optional[List[str]] = ["layernorm"] # for chatglm setting | |
) -> PreTrainedModel: | |
for name, param in model.named_parameters(): | |
if param.ndim == 1 and any(layer_norm_name in name for layer_norm_name in layer_norm_names): | |
param.data = param.data.to(torch.float32) | |
if use_gradient_checkpointing: | |
model.enable_input_require_grads() | |
model.gradient_checkpointing_enable() | |
model.config.use_cache = False # turn off when gradient checkpointing is enabled | |
if hasattr(model, output_embedding_layer_name): | |
output_embedding_layer = getattr(model, output_embedding_layer_name) | |
input_dtype = output_embedding_layer.weight.dtype | |
class CastOutputToFloat(torch.nn.Sequential): | |
def forward(self, x): | |
return super().forward(x.to(input_dtype)).to(torch.float32) | |
setattr(model, output_embedding_layer_name, CastOutputToFloat(output_embedding_layer)) | |
return model | |
def print_trainable_params(model: torch.nn.Module) -> None: | |
trainable_params, all_param = 0, 0 | |
for param in model.parameters(): | |
num_params = param.numel() | |
# if using DS Zero 3 and the weights are initialized empty | |
if num_params == 0 and hasattr(param, "ds_numel"): | |
num_params = param.ds_numel | |
all_param += num_params | |
if param.requires_grad: | |
trainable_params += num_params | |
print("trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format( | |
trainable_params, all_param, 100 * trainable_params / all_param)) | |
def filter_model_params(model: torch.nn.Module) -> Dict[str, torch.Tensor]: # filter out freezed parameters | |
state_dict = model.state_dict() | |
filtered_state_dict = {} | |
for k, v in model.named_parameters(): | |
if v.requires_grad: | |
filtered_state_dict[k] = state_dict[k] | |
return filtered_state_dict | |
def save_trainable_params(save_directory: os.PathLike, model: torch.nn.Module) -> None: | |
if os.path.isfile(save_directory): | |
raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file.") | |
os.makedirs(save_directory, exist_ok=True) | |
filtered_state_dict = filter_model_params(model) | |
torch.save(filtered_state_dict, os.path.join(save_directory, WEIGHTS_NAME)) | |
def load_trainable_params(model: torch.nn.Module, checkpoint_dir: os.PathLike) -> None: | |
weights_file = os.path.join(checkpoint_dir, WEIGHTS_NAME) | |
if not os.path.exists(weights_file): | |
raise ValueError(f"Provided path ({checkpoint_dir}) does not contain the pretrained weights.") | |
model_state_dict = torch.load(weights_file) | |
model.load_state_dict(model_state_dict, strict=False) # skip missing keys | |
def save_valuehead_params(save_directory: os.PathLike, v_head: torch.nn.Module) -> None: | |
if os.path.isfile(save_directory): | |
raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file.") | |
os.makedirs(save_directory, exist_ok=True) | |
torch.save(v_head.state_dict(), os.path.join(save_directory, VALUE_HEAD_FILE_NAME)) | |
def load_valuehead_params(model: torch.nn.Module, checkpoint_dir: os.PathLike) -> None: | |
valuehead_file = os.path.join(checkpoint_dir, VALUE_HEAD_FILE_NAME) | |
if not os.path.exists(valuehead_file): | |
raise ValueError(f"Provided path ({checkpoint_dir}) does not contain the valuehead weights.") | |
valuehead_state_dict = torch.load(valuehead_file) | |
model.register_buffer("reward_head_weight", valuehead_state_dict["summary.weight"]) | |
model.register_buffer("reward_head_bias", valuehead_state_dict["summary.bias"]) | |
model.register_buffer("default_head_weight", torch.zeros_like(valuehead_state_dict["summary.weight"])) | |
model.register_buffer("default_head_bias", torch.zeros_like(valuehead_state_dict["summary.bias"])) | |
def smooth(scalars: List[float], weight: Optional[float] = 0.95) -> List[float]: | |
""" | |
EMA implementation according to TensorBoard. | |
""" | |
last = scalars[0] | |
smoothed = list() | |
for next_val in scalars: | |
smoothed_val = last * weight + (1 - weight) * next_val | |
smoothed.append(smoothed_val) | |
last = smoothed_val | |
return smoothed | |
def plot_loss(training_args: Seq2SeqTrainingArguments, keys: Optional[List[str]] = ["loss"]) -> None: | |
import matplotlib.pyplot as plt | |
data = json.load(open(os.path.join(training_args.output_dir, TRAINER_STATE_NAME), "r")) | |
for key in keys: | |
steps, metrics = [], [] | |
for i in range(len(data["log_history"])): | |
if key in data["log_history"][i]: | |
steps.append(data["log_history"][i]["step"]) | |
metrics.append(data["log_history"][i][key]) | |
smoothed_value = smooth(metrics) | |
plt.figure() | |
plt.plot(steps, metrics, alpha=0.4, label="original") | |
plt.plot(steps, smoothed_value, label="smoothed") | |
plt.title("training {} of {}".format(key, training_args.output_dir)) | |
plt.xlabel("step") | |
plt.ylabel(key) | |
plt.legend() | |
plt.savefig(os.path.join(training_args.output_dir, "training_{}.jpg".format(key)), format="jpg", dpi=100) | |
print("Figure saved:", os.path.join(training_args.output_dir, "training_{}.jpg".format(key))) | |