digitalWDF / src /utils /.ipynb_checkpoints /config-checkpoint.py
bigPear's picture
Upload 76 files
7975f51
import os
import json
from typing import Optional
from dataclasses import dataclass, field
CHATGLM_REPO_NAME = "THUDM/chatglm-6b"
CHATGLM_LASTEST_HASH = "a8ede826cf1b62bd3c78bdfb3625c7c5d2048fbd"
@dataclass
class DatasetAttr:
load_from: str
dataset_name: Optional[str] = None
file_name: Optional[str] = None
file_sha1: Optional[str] = None
def __post_init__(self):
self.prompt_column = "instruction"
self.query_column = "input"
self.response_column = "output"
self.history_column = None
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune.
"""
model_name_or_path: Optional[str] = field(
default=CHATGLM_REPO_NAME,
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."}
)
config_name: Optional[str] = field(
default=None,
metadata={"help": "Pretrained config name or path if not the same as model_name."}
)
tokenizer_name: Optional[str] = field(
default=None,
metadata={"help": "Pretrained tokenizer name or path if not the same as model_name."}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co."}
)
use_fast_tokenizer: Optional[bool] = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}
)
model_revision: Optional[str] = field(
default=CHATGLM_LASTEST_HASH,
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}
)
use_auth_token: Optional[bool] = field(
default=False,
metadata={"help": "Will use the token generated when running `huggingface-cli login`."}
)
quantization_bit: Optional[int] = field(
default=None,
metadata={"help": "The number of bits to quantize the model."}
)
checkpoint_dir: Optional[str] = field(
default=None,
metadata={"help": "Path to the directory containing the model checkpoints as well as the configurations."}
)
reward_model: Optional[str] = field(
default=None,
metadata={"help": "Path to the directory containing the checkpoints of the reward model."}
)
def __post_init__(self):
if self.checkpoint_dir is not None: # support merging lora weights
self.checkpoint_dir = [cd.strip() for cd in self.checkpoint_dir.split(",")]
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and evaluation.
"""
dataset: Optional[str] = field(
default="alpaca_zh",
metadata={"help": "The name of provided dataset(s) to use. Use comma to separate multiple datasets."}
)
dataset_dir: Optional[str] = field(
default="data",
metadata={"help": "The name of the folder containing datasets."}
)
split: Optional[str] = field(
default="train",
metadata={"help": "Which dataset split to use for training and evaluation."}
)
overwrite_cache: Optional[bool] = field(
default=False,
metadata={"help": "Overwrite the cached training and evaluation sets."}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."}
)
max_source_length: Optional[int] = field(
default=512,
metadata={"help": "The maximum total input sequence length after tokenization."}
)
max_target_length: Optional[int] = field(
default=512,
metadata={"help": "The maximum total output sequence length after tokenization."}
)
max_samples: Optional[int] = field(
default=None,
metadata={"help": "For debugging purposes, truncate the number of examples for each dataset."}
)
num_beams: Optional[int] = field(
default=None,
metadata={"help": "Number of beams to use for evaluation. This argument will be passed to `model.generate`"}
)
ignore_pad_token_for_loss: Optional[bool] = field(
default=True,
metadata={"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."}
)
source_prefix: Optional[str] = field(
default=None,
metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
)
def __post_init__(self): # support mixing multiple datasets
dataset_names = [ds.strip() for ds in self.dataset.split(",")]
dataset_info = json.load(open(os.path.join(self.dataset_dir, "dataset_info.json"), "r"))
self.dataset_list = []
for name in dataset_names:
if name not in dataset_info:
raise ValueError("Undefined dataset {} in dataset_info.json.".format(name))
if "hf_hub_url" in dataset_info[name]:
dataset_attr = DatasetAttr("hf_hub", dataset_name=dataset_info[name]["hf_hub_url"])
elif "script_url" in dataset_info[name]:
dataset_attr = DatasetAttr("script", dataset_name=dataset_info[name]["script_url"])
else:
dataset_attr = DatasetAttr(
"file",
file_name=dataset_info[name]["file_name"],
file_sha1=dataset_info[name]["file_sha1"] if "file_sha1" in dataset_info[name] else None
)
if "columns" in dataset_info[name]:
dataset_attr.prompt_column = dataset_info[name]["columns"].get("prompt", None)
dataset_attr.query_column = dataset_info[name]["columns"].get("query", None)
dataset_attr.response_column = dataset_info[name]["columns"].get("response", None)
dataset_attr.history_column = dataset_info[name]["columns"].get("history", None)
self.dataset_list.append(dataset_attr)
@dataclass
class FinetuningArguments:
"""
Arguments pertaining to which techniques we are going to fine-tuning with.
"""
finetuning_type: Optional[str] = field(
default="lora",
metadata={"help": "Which fine-tuning method to use."}
)
num_layer_trainable: Optional[int] = field(
default=3,
metadata={"help": "Number of trainable layers for Freeze fine-tuning."}
)
name_module_trainable: Optional[str] = field(
default="mlp",
metadata={"help": "Name of trainable modules for Freeze fine-tuning."}
)
pre_seq_len: Optional[int] = field(
default=16,
metadata={"help": "Number of prefix tokens to use for P-tuning V2."}
)
prefix_projection: Optional[bool] = field(
default=False,
metadata={"help": "Whether to add a project layer for the prefix in P-tuning V2 or not."}
)
lora_rank: Optional[int] = field(
default=8,
metadata={"help": "The intrinsic dimension for LoRA fine-tuning."}
)
lora_alpha: Optional[float] = field(
default=32.0,
metadata={"help": "The scale factor for LoRA fine-tuning. (similar with the learning rate)"}
)
lora_dropout: Optional[float] = field(
default=0.1,
metadata={"help": "Dropout rate for the LoRA fine-tuning."}
)
lora_target: Optional[str] = field(
default="query_key_value",
metadata={"help": "Name(s) of target modules to apply LoRA. Use comma to separate multiple modules."}
)
resume_lora_training: Optional[bool] = field(
default=True,
metadata={"help": "Whether to resume training from the last LoRA weights or create new weights after merging them."}
)
plot_loss: Optional[bool] = field(
default=False,
metadata={"help": "Whether to plot the training loss after fine-tuning or not."}
)
def __post_init__(self):
self.lora_target = [target.strip() for target in self.lora_target.split(",")] # support custom target modules of LoRA
if self.num_layer_trainable > 0: # fine-tuning the last n layers if num_layer_trainable > 0
trainable_layer_ids = [27-k for k in range(self.num_layer_trainable)]
else: # fine-tuning the first n layers if num_layer_trainable < 0
trainable_layer_ids = [k for k in range(-self.num_layer_trainable)]
if self.name_module_trainable == "mlp":
self.trainable_layers = ["layers.{:d}.mlp".format(idx) for idx in trainable_layer_ids]
elif self.name_module_trainable == "qkv":
self.trainable_layers = ["layers.{:d}.attention.query_key_value".format(idx) for idx in trainable_layer_ids]
if self.finetuning_type not in ["none", "freeze", "p_tuning", "lora", "full"]:
raise NotImplementedError("Invalid fine-tuning method.")