Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import torch | |
| #from torch.utils.serialization import load_lua | |
| import os | |
| import scipy.io as sio | |
| import cv2 | |
| import math | |
| from math import cos, sin | |
| def plot_pose_cube(img, yaw, pitch, roll, tdx=None, tdy=None, size=150.): | |
| # Input is a cv2 image | |
| # pose_params: (pitch, yaw, roll, tdx, tdy) | |
| # Where (tdx, tdy) is the translation of the face. | |
| # For pose we have [pitch yaw roll tdx tdy tdz scale_factor] | |
| p = pitch * np.pi / 180 | |
| y = -(yaw * np.pi / 180) | |
| r = roll * np.pi / 180 | |
| if tdx != None and tdy != None: | |
| face_x = tdx - 0.50 * size | |
| face_y = tdy - 0.50 * size | |
| else: | |
| height, width = img.shape[:2] | |
| face_x = width / 2 - 0.5 * size | |
| face_y = height / 2 - 0.5 * size | |
| x1 = size * (cos(y) * cos(r)) + face_x | |
| y1 = size * (cos(p) * sin(r) + cos(r) * sin(p) * sin(y)) + face_y | |
| x2 = size * (-cos(y) * sin(r)) + face_x | |
| y2 = size * (cos(p) * cos(r) - sin(p) * sin(y) * sin(r)) + face_y | |
| x3 = size * (sin(y)) + face_x | |
| y3 = size * (-cos(y) * sin(p)) + face_y | |
| # Draw base in red | |
| cv2.line(img, (int(face_x), int(face_y)), (int(x1),int(y1)),(0,0,255),3) | |
| cv2.line(img, (int(face_x), int(face_y)), (int(x2),int(y2)),(0,0,255),3) | |
| cv2.line(img, (int(x2), int(y2)), (int(x2+x1-face_x),int(y2+y1-face_y)),(0,0,255),3) | |
| cv2.line(img, (int(x1), int(y1)), (int(x1+x2-face_x),int(y1+y2-face_y)),(0,0,255),3) | |
| # Draw pillars in blue | |
| cv2.line(img, (int(face_x), int(face_y)), (int(x3),int(y3)),(255,0,0),2) | |
| cv2.line(img, (int(x1), int(y1)), (int(x1+x3-face_x),int(y1+y3-face_y)),(255,0,0),2) | |
| cv2.line(img, (int(x2), int(y2)), (int(x2+x3-face_x),int(y2+y3-face_y)),(255,0,0),2) | |
| cv2.line(img, (int(x2+x1-face_x),int(y2+y1-face_y)), (int(x3+x1+x2-2*face_x),int(y3+y2+y1-2*face_y)),(255,0,0),2) | |
| # Draw top in green | |
| cv2.line(img, (int(x3+x1-face_x),int(y3+y1-face_y)), (int(x3+x1+x2-2*face_x),int(y3+y2+y1-2*face_y)),(0,255,0),2) | |
| cv2.line(img, (int(x2+x3-face_x),int(y2+y3-face_y)), (int(x3+x1+x2-2*face_x),int(y3+y2+y1-2*face_y)),(0,255,0),2) | |
| cv2.line(img, (int(x3), int(y3)), (int(x3+x1-face_x),int(y3+y1-face_y)),(0,255,0),2) | |
| cv2.line(img, (int(x3), int(y3)), (int(x3+x2-face_x),int(y3+y2-face_y)),(0,255,0),2) | |
| return img | |
| def draw_axis(img, yaw, pitch, roll, tdx=None, tdy=None, size = 100): | |
| pitch = pitch * np.pi / 180 | |
| yaw = -(yaw * np.pi / 180) | |
| roll = roll * np.pi / 180 | |
| if tdx != None and tdy != None: | |
| tdx = tdx | |
| tdy = tdy | |
| else: | |
| height, width = img.shape[:2] | |
| tdx = width / 2 | |
| tdy = height / 2 | |
| # X-Axis pointing to right. drawn in red | |
| x1 = size * (cos(yaw) * cos(roll)) + tdx | |
| y1 = size * (cos(pitch) * sin(roll) + cos(roll) * sin(pitch) * sin(yaw)) + tdy | |
| # Y-Axis | drawn in green | |
| # v | |
| x2 = size * (-cos(yaw) * sin(roll)) + tdx | |
| y2 = size * (cos(pitch) * cos(roll) - sin(pitch) * sin(yaw) * sin(roll)) + tdy | |
| # Z-Axis (out of the screen) drawn in blue | |
| x3 = size * (sin(yaw)) + tdx | |
| y3 = size * (-cos(yaw) * sin(pitch)) + tdy | |
| cv2.line(img, (int(tdx), int(tdy)), (int(x1),int(y1)),(0,0,255),4) | |
| cv2.line(img, (int(tdx), int(tdy)), (int(x2),int(y2)),(0,255,0),4) | |
| cv2.line(img, (int(tdx), int(tdy)), (int(x3),int(y3)),(255,0,0),4) | |
| return img | |
| def get_pose_params_from_mat(mat_path): | |
| # This functions gets the pose parameters from the .mat | |
| # Annotations that come with the Pose_300W_LP dataset. | |
| mat = sio.loadmat(mat_path) | |
| # [pitch yaw roll tdx tdy tdz scale_factor] | |
| pre_pose_params = mat['Pose_Para'][0] | |
| # Get [pitch, yaw, roll, tdx, tdy] | |
| pose_params = pre_pose_params[:5] | |
| return pose_params | |
| def get_ypr_from_mat(mat_path): | |
| # Get yaw, pitch, roll from .mat annotation. | |
| # They are in radians | |
| mat = sio.loadmat(mat_path) | |
| # [pitch yaw roll tdx tdy tdz scale_factor] | |
| pre_pose_params = mat['Pose_Para'][0] | |
| # Get [pitch, yaw, roll] | |
| pose_params = pre_pose_params[:3] | |
| return pose_params | |
| def get_pt2d_from_mat(mat_path): | |
| # Get 2D landmarks | |
| mat = sio.loadmat(mat_path) | |
| pt2d = mat['pt2d'] | |
| return pt2d | |
| # batch*n | |
| def normalize_vector( v, use_gpu=True): | |
| batch=v.shape[0] | |
| v_mag = torch.sqrt(v.pow(2).sum(1))# batch | |
| if use_gpu: | |
| v_mag = torch.max(v_mag, torch.autograd.Variable(torch.FloatTensor([1e-8]).cuda())) | |
| else: | |
| v_mag = torch.max(v_mag, torch.autograd.Variable(torch.FloatTensor([1e-8]))) | |
| v_mag = v_mag.view(batch,1).expand(batch,v.shape[1]) | |
| v = v/v_mag | |
| return v | |
| # u, v batch*n | |
| def cross_product( u, v): | |
| batch = u.shape[0] | |
| #print (u.shape) | |
| #print (v.shape) | |
| i = u[:,1]*v[:,2] - u[:,2]*v[:,1] | |
| j = u[:,2]*v[:,0] - u[:,0]*v[:,2] | |
| k = u[:,0]*v[:,1] - u[:,1]*v[:,0] | |
| out = torch.cat((i.view(batch,1), j.view(batch,1), k.view(batch,1)),1)#batch*3 | |
| return out | |
| #poses batch*6 | |
| #poses | |
| def compute_rotation_matrix_from_ortho6d(poses, use_gpu=True): | |
| x_raw = poses[:,0:3]#batch*3 | |
| y_raw = poses[:,3:6]#batch*3 | |
| x = normalize_vector(x_raw, use_gpu) #batch*3 | |
| z = cross_product(x,y_raw) #batch*3 | |
| z = normalize_vector(z, use_gpu)#batch*3 | |
| y = cross_product(z,x)#batch*3 | |
| x = x.view(-1,3,1) | |
| y = y.view(-1,3,1) | |
| z = z.view(-1,3,1) | |
| matrix = torch.cat((x,y,z), 2) #batch*3*3 | |
| return matrix | |
| #input batch*4*4 or batch*3*3 | |
| #output torch batch*3 x, y, z in radiant | |
| #the rotation is in the sequence of x,y,z | |
| def compute_euler_angles_from_rotation_matrices(rotation_matrices, use_gpu=True): | |
| batch=rotation_matrices.shape[0] | |
| R=rotation_matrices | |
| sy = torch.sqrt(R[:,0,0]*R[:,0,0]+R[:,1,0]*R[:,1,0]) | |
| singular= sy<1e-6 | |
| singular=singular.float() | |
| x=torch.atan2(R[:,2,1], R[:,2,2]) | |
| y=torch.atan2(-R[:,2,0], sy) | |
| z=torch.atan2(R[:,1,0],R[:,0,0]) | |
| xs=torch.atan2(-R[:,1,2], R[:,1,1]) | |
| ys=torch.atan2(-R[:,2,0], sy) | |
| zs=R[:,1,0]*0 | |
| if use_gpu: | |
| out_euler=torch.autograd.Variable(torch.zeros(batch,3).cuda()) | |
| else: | |
| out_euler=torch.autograd.Variable(torch.zeros(batch,3)) | |
| out_euler[:,0]=x*(1-singular)+xs*singular | |
| out_euler[:,1]=y*(1-singular)+ys*singular | |
| out_euler[:,2]=z*(1-singular)+zs*singular | |
| return out_euler | |
| def get_R(x,y,z): | |
| ''' Get rotation matrix from three rotation angles (radians). right-handed. | |
| Args: | |
| angles: [3,]. x, y, z angles | |
| Returns: | |
| R: [3, 3]. rotation matrix. | |
| ''' | |
| # x | |
| Rx = np.array([[1, 0, 0], | |
| [0, np.cos(x), -np.sin(x)], | |
| [0, np.sin(x), np.cos(x)]]) | |
| # y | |
| Ry = np.array([[np.cos(y), 0, np.sin(y)], | |
| [0, 1, 0], | |
| [-np.sin(y), 0, np.cos(y)]]) | |
| # z | |
| Rz = np.array([[np.cos(z), -np.sin(z), 0], | |
| [np.sin(z), np.cos(z), 0], | |
| [0, 0, 1]]) | |
| R = Rz.dot(Ry.dot(Rx)) | |
| return R |