bidhanchgarain's picture
Update app.py
0ba5423 verified
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
from rdkit import Chem
from rdkit.Chem import AllChem, Descriptors, Draw
import io
import base64
import numpy as np
from fastapi import HTTPException
from Gradio_UI import GradioUI
import os
from huggingface_hub import login
login(token = os.getenv('bidhan_hf_agents_learning'))
# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type
#Keep this format for the description / args / args description but feel free to modify the tool
"""A tool that does nothing yet
Args:
arg1: the first argument
arg2: the second argument
"""
return "What magic will you build ?"
@tool
def get_molecule_info(smiles: str) -> dict:
"""
Fetches molecular structure, key features, and generates a 3D conformer.
Args:
smiles: The SMILES string of the molecule.
Returns:
A dictionary containing:
- 2D molecular structure (Base64 PNG)
- 3D coordinates of the lowest-energy conformer
- Molecular descriptors (MW, LogP, TPSA, H-bond donors/acceptors, rotatable bonds)
"""
try:
# Convert SMILES to a molecule
mol = Chem.MolFromSmiles(smiles)
if mol is None:
raise ValueError("Invalid SMILES string")
# Generate 2D molecular image
img = Draw.MolToImage(mol)
img_buffer = io.BytesIO()
img.save(img_buffer, format="PNG")
img_b64 = base64.b64encode(img_buffer.getvalue()).decode()
# Compute molecular descriptors
mol_weight = Descriptors.MolWt(mol)
logp = Descriptors.MolLogP(mol)
tpsa = Descriptors.TPSA(mol)
h_donors = Descriptors.NumHDonors(mol)
h_acceptors = Descriptors.NumHAcceptors(mol)
rotatable_bonds = Descriptors.NumRotatableBonds(mol)
# Generate 3D conformer
mol_3d = Chem.AddHs(mol) # Add hydrogens for correct geometry
AllChem.EmbedMolecule(mol_3d, AllChem.ETKDG()) # Generate initial 3D structure
AllChem.UFFOptimizeMolecule(mol_3d) # Optimize using UFF
# Extract 3D coordinates
conf = mol_3d.GetConformer()
coords = [
{
"atom": mol_3d.GetAtomWithIdx(i).GetSymbol(),
"x": conf.GetAtomPosition(i).x,
"y": conf.GetAtomPosition(i).y,
"z": conf.GetAtomPosition(i).z,
}
for i in range(mol_3d.GetNumAtoms())
]
return {
"image": f"data:image/png;base64,{img_b64}",
"molecular_weight": mol_weight,
"logP": logp,
"TPSA": tpsa,
"H_bond_donors": h_donors,
"H_bond_acceptors": h_acceptors,
"rotatable_bonds": rotatable_bonds,
"3D_coordinates": coords
}
except Exception as e:
raise HTTPException(status_code=400, detail=str(e))
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""A tool that fetches the current local time in a specified timezone.
Args:
timezone: A string representing a valid timezone (e.g., 'America/New_York').
"""
try:
# Create timezone object
tz = pytz.timezone(timezone)
# Get current time in that timezone
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
final_answer = FinalAnswerTool()
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
model = HfApiModel(
max_tokens=1024,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
agent = CodeAgent(
model=model,
tools=[final_answer, get_molecule_info], # Add the tool here
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name="Molecular Structure Fetcher",
description="Fetch molecular structures and properties from SMILES strings",
prompt_templates=prompt_templates
)
GradioUI(agent).launch(debug=True, share=False)