Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from fastai.vision.all import * | |
| from PIL import Image, ImageDraw, ImageFont | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| import matplotlib.colors as mcolors | |
| # import os | |
| # Load a pre-trained image classification model | |
| import pathlib | |
| plt = platform.system() | |
| if plt == 'Windows': pathlib.PosixPath = pathlib.WindowsPath | |
| if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath | |
| root = os.path.dirname(__file__) | |
| def acc_camvid(): | |
| pass | |
| model = load_learner("./models/model.pkl") | |
| def process(imagep): | |
| # Predict and create the image as before | |
| pred = model.predict(imagep) | |
| a = pred[0] | |
| i = np.stack([(a**17) % 255, (a**11) % 255, (a**9) % 255], axis=2) | |
| img = Image.fromarray(i.astype('uint8'), mode='RGB') | |
| imagep = Image.open(imagep) | |
| # imagep = Image.fromarray(imagep) | |
| imagep = imagep.convert("RGBA") | |
| img = img.convert("RGBA") | |
| img = img.resize(imagep.size) | |
| alpha = Image.new('L', img.size, int(0.6 * 255)) | |
| img.putalpha(alpha) | |
| combined = Image.alpha_composite(imagep, img) | |
| return combined.convert("RGB") | |
| # Sample images for user to choose from | |
| sample_images = ["./sample_images/street.jpg", "./sample_images/market.jpg","./sample_images/day.jpg"] | |
| iface = gr.Interface( | |
| fn=process, | |
| inputs=gr.Image(label="Select an image", type="filepath"), | |
| outputs='image', | |
| live=False, | |
| title="Traffic image - semantic segmentation", | |
| description="Upload a road traffic image or select one of the examples below", | |
| examples=sample_images | |
| ) | |
| iface.launch() |