Spaces:
Sleeping
Sleeping
import gradio as gr | |
from fastai.vision.all import * | |
from PIL import Image, ImageDraw, ImageFont | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import matplotlib.colors as mcolors | |
# import os | |
# Load a pre-trained image classification model | |
import pathlib | |
plt = platform.system() | |
if plt == 'Windows': pathlib.PosixPath = pathlib.WindowsPath | |
if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath | |
root = os.path.dirname(__file__) | |
def acc_camvid(): | |
pass | |
model = load_learner("./models/model.pkl") | |
def process(imagep): | |
# Predict and create the image as before | |
pred = model.predict(imagep) | |
a = pred[0] | |
i = np.stack([(a**17) % 255, (a**11) % 255, (a**9) % 255], axis=2) | |
img = Image.fromarray(i.astype('uint8'), mode='RGB') | |
imagep = Image.open(imagep) | |
# imagep = Image.fromarray(imagep) | |
imagep = imagep.convert("RGBA") | |
img = img.convert("RGBA") | |
img = img.resize(imagep.size) | |
alpha = Image.new('L', img.size, int(0.6 * 255)) | |
img.putalpha(alpha) | |
combined = Image.alpha_composite(imagep, img) | |
return combined.convert("RGB") | |
# Sample images for user to choose from | |
sample_images = ["./sample_images/street.jpg", "./sample_images/market.jpg","./sample_images/day.jpg"] | |
iface = gr.Interface( | |
fn=process, | |
inputs=gr.Image(label="Select an image", type="filepath"), | |
outputs='image', | |
live=False, | |
title="Traffic image - semantic segmentation", | |
description="Upload a road traffic image or select one of the examples below", | |
examples=sample_images | |
) | |
iface.launch() |