Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import torchvision.models as models
|
| 4 |
+
from torchvision.models import EfficientNet_B0_Weights # Or the specific version used
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from torchvision import transforms
|
| 7 |
+
import json
|
| 8 |
+
from huggingface_hub import hf_hub_download
|
| 9 |
+
import os
|
| 10 |
+
|
| 11 |
+
# --- Configuration ---
|
| 12 |
+
# This should be the ID of the repository where your MODEL is stored
|
| 13 |
+
MODEL_REPO_ID = "bhumong/fruit-classifier-efficientnet-b0" # <-- REPLACE if different
|
| 14 |
+
MODEL_FILENAME = "pytorch_model.bin"
|
| 15 |
+
CONFIG_FILENAME = "config.json"
|
| 16 |
+
|
| 17 |
+
# --- 1. Load Model and Config ---
|
| 18 |
+
# (Using the function defined previously to load from Hub)
|
| 19 |
+
def load_model_from_hf(repo_id, model_filename, config_filename):
|
| 20 |
+
"""Loads model state_dict and config from Hugging Face Hub."""
|
| 21 |
+
try:
|
| 22 |
+
config_path = hf_hub_download(repo_id=repo_id, filename=config_filename)
|
| 23 |
+
with open(config_path, 'r') as f:
|
| 24 |
+
config = json.load(f)
|
| 25 |
+
print("Config loaded:", config) # Debug print
|
| 26 |
+
except Exception as e:
|
| 27 |
+
print(f"Error loading config from {repo_id}/{config_filename}: {e}")
|
| 28 |
+
raise # Re-raise error if config fails
|
| 29 |
+
|
| 30 |
+
num_labels = config.get('num_labels')
|
| 31 |
+
id2label = config.get('id2label')
|
| 32 |
+
|
| 33 |
+
if num_labels is None or id2label is None:
|
| 34 |
+
raise ValueError("Config file must contain 'num_labels' and 'id2label'")
|
| 35 |
+
|
| 36 |
+
# Instantiate the correct architecture (EfficientNet-B0)
|
| 37 |
+
model = models.efficientnet_b0(weights=None) # Load architecture only
|
| 38 |
+
|
| 39 |
+
# Modify the classifier head
|
| 40 |
+
try:
|
| 41 |
+
num_ftrs = model.classifier[1].in_features
|
| 42 |
+
model.classifier[1] = torch.nn.Linear(num_ftrs, num_labels)
|
| 43 |
+
except Exception as e:
|
| 44 |
+
print(f"Error modifying model classifier: {e}")
|
| 45 |
+
raise
|
| 46 |
+
|
| 47 |
+
# Download and load model weights
|
| 48 |
+
try:
|
| 49 |
+
model_path = hf_hub_download(repo_id=repo_id, filename=model_filename)
|
| 50 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 51 |
+
state_dict = torch.load(model_path, map_location=device)
|
| 52 |
+
model.load_state_dict(state_dict)
|
| 53 |
+
model.to(device) # Move model to device
|
| 54 |
+
model.eval() # Set to evaluation mode
|
| 55 |
+
print(f"Model loaded successfully from {repo_id} to device {device}.")
|
| 56 |
+
return model, config, id2label, device
|
| 57 |
+
except Exception as e:
|
| 58 |
+
print(f"Error loading model weights from {repo_id}/{model_filename}: {e}")
|
| 59 |
+
raise
|
| 60 |
+
|
| 61 |
+
# Load the model globally when the script starts
|
| 62 |
+
try:
|
| 63 |
+
model, config, id2label, device = load_model_from_hf(MODEL_REPO_ID, MODEL_FILENAME, CONFIG_FILENAME)
|
| 64 |
+
except Exception as e:
|
| 65 |
+
print(f"FATAL: Could not load model or config. Gradio app cannot start. Error: {e}")
|
| 66 |
+
# Optionally, exit or raise a specific error for Gradio to catch if possible
|
| 67 |
+
model, config, id2label, device = None, None, None, None # Prevent further errors
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
# --- 2. Define Preprocessing ---
|
| 71 |
+
IMG_SIZE = (224, 224)
|
| 72 |
+
mean=[0.485, 0.456, 0.406]
|
| 73 |
+
std=[0.229, 0.224, 0.225]
|
| 74 |
+
|
| 75 |
+
preprocess = transforms.Compose([
|
| 76 |
+
transforms.Resize(IMG_SIZE),
|
| 77 |
+
transforms.ToTensor(),
|
| 78 |
+
transforms.Normalize(mean=mean, std=std),
|
| 79 |
+
])
|
| 80 |
+
|
| 81 |
+
# --- 3. Define Prediction Function ---
|
| 82 |
+
def predict(inp_image):
|
| 83 |
+
"""Takes a PIL image, preprocesses, predicts, and returns label confidences."""
|
| 84 |
+
if model is None or id2label is None:
|
| 85 |
+
return {"Error": 1.0, "Message": "Model not loaded"} # Handle model load failure
|
| 86 |
+
|
| 87 |
+
if inp_image is None:
|
| 88 |
+
return {"Error": 1.0, "Message": "No image provided"}
|
| 89 |
+
|
| 90 |
+
try:
|
| 91 |
+
# Ensure image is RGB
|
| 92 |
+
img = inp_image.convert("RGB")
|
| 93 |
+
input_tensor = preprocess(img)
|
| 94 |
+
input_batch = input_tensor.unsqueeze(0) # Add batch dimension
|
| 95 |
+
input_batch = input_batch.to(device) # Move tensor to the correct device
|
| 96 |
+
|
| 97 |
+
with torch.no_grad():
|
| 98 |
+
output = model(input_batch)
|
| 99 |
+
probabilities = torch.nn.functional.softmax(output[0], dim=0)
|
| 100 |
+
|
| 101 |
+
# Prepare output for Gradio Label component (dictionary {label: probability})
|
| 102 |
+
confidences = {id2label[str(i)]: float(probabilities[i]) for i in range(len(id2label))}
|
| 103 |
+
return confidences
|
| 104 |
+
|
| 105 |
+
except Exception as e:
|
| 106 |
+
print(f"Error during prediction: {e}")
|
| 107 |
+
return {"Error": 1.0, "Message": f"Prediction failed: {e}"}
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
# --- 4. Create Gradio Interface ---
|
| 111 |
+
|
| 112 |
+
# Add example images (Make sure these paths exist within your Space repo!)
|
| 113 |
+
# Create an 'images' folder in your Space and upload some examples.
|
| 114 |
+
example_list = [
|
| 115 |
+
["images/example_apple.jpg"], # <-- REPLACE with actual paths in your Space repo
|
| 116 |
+
["images/example_banana.jpg"], # <-- REPLACE with actual paths in your Space repo
|
| 117 |
+
["images/example_strawberry.jpg"] # <-- REPLACE with actual paths in your Space repo
|
| 118 |
+
]
|
| 119 |
+
# Check if example files exist, otherwise provide empty list
|
| 120 |
+
if not all(os.path.exists(ex[0]) for ex in example_list):
|
| 121 |
+
print("Warning: Example image paths not found. Clearing examples.")
|
| 122 |
+
example_list = []
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
# Define Title, Description, and Article for the Gradio app
|
| 126 |
+
title = "Fruit Classifier πππ"
|
| 127 |
+
description = """
|
| 128 |
+
Upload an image of a fruit or use one of the examples below.
|
| 129 |
+
This demo uses an EfficientNet-B0 model fine-tuned on the Fruits-360 dataset
|
| 130 |
+
(with merged classes) to predict the fruit type.
|
| 131 |
+
Model hosted on Hugging Face Hub: [{MODEL_REPO_ID}](https://huggingface.co/{MODEL_REPO_ID})
|
| 132 |
+
""".format(MODEL_REPO_ID=MODEL_REPO_ID) # Format description with repo ID
|
| 133 |
+
article = """
|
| 134 |
+
<div style='text-align: center;'>
|
| 135 |
+
Model trained using PyTorch and tracked with Neptune.ai. |
|
| 136 |
+
<a href='https://huggingface.co/{MODEL_REPO_ID}' target='_blank'>Model Repository</a> |
|
| 137 |
+
Built with Gradio
|
| 138 |
+
</div>
|
| 139 |
+
""".format(MODEL_REPO_ID=MODEL_REPO_ID)
|
| 140 |
+
|
| 141 |
+
# Create and launch the interface
|
| 142 |
+
if model is not None: # Only launch if model loaded successfully
|
| 143 |
+
iface = gr.Interface(
|
| 144 |
+
fn=predict,
|
| 145 |
+
inputs=gr.Image(type="pil", label="Upload Fruit Image"),
|
| 146 |
+
outputs=gr.Label(num_top_classes=5, label="Predictions"), # Show top 5 predictions
|
| 147 |
+
title=title,
|
| 148 |
+
description=description,
|
| 149 |
+
article=article,
|
| 150 |
+
examples=example_list,
|
| 151 |
+
allow_flagging="never" # Optional: disable flagging
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
iface.launch()
|
| 155 |
+
else:
|
| 156 |
+
print("Gradio interface not launched due to model loading failure.")
|
| 157 |
+
|