Update app.py
Browse files
app.py
CHANGED
@@ -3,80 +3,33 @@ import numpy as np
|
|
3 |
import h5py
|
4 |
import faiss
|
5 |
import json
|
|
|
|
|
|
|
6 |
import re
|
7 |
from collections import Counter
|
|
|
8 |
import torch
|
9 |
-
from nltk.corpus import
|
10 |
-
from nltk.tokenize import word_tokenize
|
11 |
import nltk
|
12 |
-
from sentence_transformers import SentenceTransformer
|
13 |
-
from sklearn.feature_extraction.text import TfidfVectorizer
|
14 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
15 |
-
|
16 |
-
# Download necessary NLTK data
|
17 |
-
nltk.download('stopwords', quiet=True)
|
18 |
-
nltk.download('punkt', quiet=True)
|
19 |
-
|
20 |
-
# Load SentenceTransformer model
|
21 |
-
model = SentenceTransformer('anferico/bert-for-patents')
|
22 |
-
|
23 |
-
def preprocess_query(text):
|
24 |
-
# Remove "[EN]" label and claim numbers
|
25 |
-
text = re.sub(r'\[EN\]\s*', '', text)
|
26 |
-
text = re.sub(r'^\d+\.\s*', '', text, flags=re.MULTILINE)
|
27 |
-
|
28 |
-
# Convert to lowercase while preserving acronyms and units
|
29 |
-
words = text.split()
|
30 |
-
text = ' '.join(word if word.isupper() or re.match(r'^\d+(\.\d+)?[a-zA-Z]+$', word) else word.lower() for word in words)
|
31 |
-
|
32 |
-
# Remove special characters except hyphens and periods in numbers
|
33 |
-
text = re.sub(r'[^\w\s\-.]', ' ', text)
|
34 |
-
text = re.sub(r'(?<!\d)\.(?!\d)', ' ', text) # Remove periods not in numbers
|
35 |
-
|
36 |
-
# Normalize spaces
|
37 |
-
text = re.sub(r'\s+', ' ', text).strip()
|
38 |
-
|
39 |
-
# Tokenize
|
40 |
-
tokens = word_tokenize(text)
|
41 |
-
|
42 |
-
# Remove stopwords
|
43 |
-
stop_words = set(stopwords.words('english'))
|
44 |
-
tokens = [word for word in tokens if word.lower() not in stop_words]
|
45 |
-
|
46 |
-
# Join tokens back into text
|
47 |
-
text = ' '.join(tokens)
|
48 |
-
|
49 |
-
# Preserve numerical values with units
|
50 |
-
text = re.sub(r'(\d+(\.\d+)?)([a-zA-Z]+)', r'\1_\3', text)
|
51 |
-
|
52 |
-
# Handle ranges and measurements
|
53 |
-
text = re.sub(r'(\d+(\.\d+)?)(\s*to\s*)(\d+(\.\d+)?)(\s*[a-zA-Z]+)', r'\1_to_\4_\6', text)
|
54 |
-
text = re.sub(r'between\s*(\d+(\.\d+)?)(\s*and\s*)(\d+(\.\d+)?)\s*([a-zA-Z]+)', r'between_\1_and_\4_\5', text)
|
55 |
-
|
56 |
-
# Preserve chemical formulas
|
57 |
-
text = re.sub(r'\b([A-Z][a-z]?\d*)+\b', lambda m: m.group().replace(' ', ''), text)
|
58 |
-
|
59 |
-
return text
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
processed_text = preprocess_query(text)
|
64 |
-
# Split the processed text into individual terms
|
65 |
-
features = processed_text.split()
|
66 |
-
# Remove duplicates while preserving order
|
67 |
-
features = list(dict.fromkeys(features))
|
68 |
-
return features
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
73 |
|
74 |
def load_data():
|
75 |
try:
|
76 |
with h5py.File('patent_embeddings.h5', 'r') as f:
|
77 |
embeddings = f['embeddings'][:]
|
78 |
patent_numbers = f['patent_numbers'][:]
|
79 |
-
|
80 |
metadata = {}
|
81 |
texts = []
|
82 |
with open('patent_metadata.jsonl', 'r') as f:
|
@@ -84,15 +37,63 @@ def load_data():
|
|
84 |
data = json.loads(line)
|
85 |
metadata[data['patent_number']] = data
|
86 |
texts.append(data['text'])
|
87 |
-
|
88 |
print(f"Embedding shape: {embeddings.shape}")
|
89 |
print(f"Number of patent numbers: {len(patent_numbers)}")
|
90 |
print(f"Number of metadata entries: {len(metadata)}")
|
|
|
91 |
return embeddings, patent_numbers, metadata, texts
|
|
|
|
|
|
|
92 |
except Exception as e:
|
93 |
-
print(f"An error occurred while loading data: {e}")
|
94 |
raise
|
95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
def compare_features(query_features, patent_features):
|
97 |
common_features = set(query_features) & set(patent_features)
|
98 |
similarity_score = len(common_features) / max(len(query_features), len(patent_features))
|
@@ -100,21 +101,21 @@ def compare_features(query_features, patent_features):
|
|
100 |
|
101 |
def hybrid_search(query, top_k=5):
|
102 |
print(f"Original query: {query}")
|
103 |
-
|
104 |
-
query_features = extract_key_features(
|
105 |
-
|
106 |
-
# Encode the
|
107 |
-
query_embedding = encode_texts([
|
108 |
query_embedding = query_embedding / np.linalg.norm(query_embedding)
|
109 |
-
|
110 |
# Perform semantic similarity search
|
111 |
semantic_distances, semantic_indices = index.search(np.array([query_embedding]).astype('float32'), top_k * 2)
|
112 |
-
|
113 |
# Perform TF-IDF based search
|
114 |
-
query_tfidf = tfidf_vectorizer.transform([
|
115 |
tfidf_similarities = cosine_similarity(query_tfidf, tfidf_matrix).flatten()
|
116 |
tfidf_indices = tfidf_similarities.argsort()[-top_k * 2:][::-1]
|
117 |
-
|
118 |
# Combine and rank results
|
119 |
combined_results = {}
|
120 |
for i, idx in enumerate(semantic_indices[0]):
|
@@ -127,7 +128,7 @@ def hybrid_search(query, top_k=5):
|
|
127 |
'common_features': common_features,
|
128 |
'text': text
|
129 |
}
|
130 |
-
|
131 |
for idx in tfidf_indices:
|
132 |
patent_number = patent_numbers[idx].decode('utf-8')
|
133 |
if patent_number not in combined_results:
|
@@ -139,9 +140,10 @@ def hybrid_search(query, top_k=5):
|
|
139 |
'common_features': common_features,
|
140 |
'text': text
|
141 |
}
|
142 |
-
|
143 |
# Sort and get top results
|
144 |
top_results = sorted(combined_results.items(), key=lambda x: x[1]['score'], reverse=True)[:top_k]
|
|
|
145 |
results = []
|
146 |
for patent_number, data in top_results:
|
147 |
result = f"Patent Number: {patent_number}\n"
|
@@ -149,24 +151,10 @@ def hybrid_search(query, top_k=5):
|
|
149 |
result += f"Combined Score: {data['score']:.4f}\n"
|
150 |
result += f"Common Key Features: {', '.join(data['common_features'])}\n\n"
|
151 |
results.append(result)
|
152 |
-
|
153 |
return "\n".join(results)
|
154 |
|
155 |
-
#
|
156 |
-
embeddings, patent_numbers, metadata, texts = load_data()
|
157 |
-
|
158 |
-
# Normalize embeddings for cosine similarity
|
159 |
-
embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True)
|
160 |
-
|
161 |
-
# Create FAISS index for cosine similarity
|
162 |
-
index = faiss.IndexFlatIP(embeddings.shape[1])
|
163 |
-
index.add(embeddings)
|
164 |
-
|
165 |
-
# Create TF-IDF vectorizer
|
166 |
-
tfidf_vectorizer = TfidfVectorizer(stop_words='english')
|
167 |
-
tfidf_matrix = tfidf_vectorizer.fit_transform(texts)
|
168 |
-
|
169 |
-
# Create Gradio interface
|
170 |
iface = gr.Interface(
|
171 |
fn=hybrid_search,
|
172 |
inputs=[
|
@@ -179,4 +167,4 @@ iface = gr.Interface(
|
|
179 |
)
|
180 |
|
181 |
if __name__ == "__main__":
|
182 |
-
iface.launch()
|
|
|
3 |
import h5py
|
4 |
import faiss
|
5 |
import json
|
6 |
+
from transformers import AutoTokenizer, AutoModel
|
7 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
8 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
9 |
import re
|
10 |
from collections import Counter
|
11 |
+
import spacy
|
12 |
import torch
|
13 |
+
from nltk.corpus import wordnet
|
|
|
14 |
import nltk
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
# Download WordNet data
|
17 |
+
nltk.download('wordnet')
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
# Load Spacy model for advanced NLP
|
20 |
+
try:
|
21 |
+
nlp = spacy.load("en_core_web_sm")
|
22 |
+
except IOError:
|
23 |
+
print("Downloading spacy model...")
|
24 |
+
spacy.cli.download("en_core_web_sm")
|
25 |
+
nlp = spacy.load("en_core_web_sm")
|
26 |
|
27 |
def load_data():
|
28 |
try:
|
29 |
with h5py.File('patent_embeddings.h5', 'r') as f:
|
30 |
embeddings = f['embeddings'][:]
|
31 |
patent_numbers = f['patent_numbers'][:]
|
32 |
+
|
33 |
metadata = {}
|
34 |
texts = []
|
35 |
with open('patent_metadata.jsonl', 'r') as f:
|
|
|
37 |
data = json.loads(line)
|
38 |
metadata[data['patent_number']] = data
|
39 |
texts.append(data['text'])
|
40 |
+
|
41 |
print(f"Embedding shape: {embeddings.shape}")
|
42 |
print(f"Number of patent numbers: {len(patent_numbers)}")
|
43 |
print(f"Number of metadata entries: {len(metadata)}")
|
44 |
+
|
45 |
return embeddings, patent_numbers, metadata, texts
|
46 |
+
except FileNotFoundError as e:
|
47 |
+
print(f"Error: Could not find file. {e}")
|
48 |
+
raise
|
49 |
except Exception as e:
|
50 |
+
print(f"An unexpected error occurred while loading data: {e}")
|
51 |
raise
|
52 |
|
53 |
+
embeddings, patent_numbers, metadata, texts = load_data()
|
54 |
+
|
55 |
+
# Load BERT model for encoding search queries
|
56 |
+
tokenizer = AutoTokenizer.from_pretrained('anferico/bert-for-patents')
|
57 |
+
bert_model = AutoModel.from_pretrained('anferico/bert-for-patents')
|
58 |
+
|
59 |
+
def encode_texts(texts, max_length=512):
|
60 |
+
inputs = tokenizer(texts, padding=True, truncation=True, max_length=max_length, return_tensors='pt')
|
61 |
+
with torch.no_grad():
|
62 |
+
outputs = bert_model(**inputs)
|
63 |
+
embeddings = outputs.last_hidden_state.mean(dim=1)
|
64 |
+
return embeddings.numpy()
|
65 |
+
|
66 |
+
# Check if the embedding dimensions match
|
67 |
+
if embeddings.shape[1] != encode_texts(["test"]).shape[1]:
|
68 |
+
print("Embedding dimensions do not match. Rebuilding FAISS index.")
|
69 |
+
# Rebuild embeddings using the new model
|
70 |
+
embeddings = encode_texts(texts)
|
71 |
+
embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True)
|
72 |
+
|
73 |
+
# Normalize embeddings for cosine similarity
|
74 |
+
embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True)
|
75 |
+
|
76 |
+
# Create FAISS index for cosine similarity
|
77 |
+
index = faiss.IndexFlatIP(embeddings.shape[1])
|
78 |
+
index.add(embeddings)
|
79 |
+
|
80 |
+
# Create TF-IDF vectorizer
|
81 |
+
tfidf_vectorizer = TfidfVectorizer(stop_words='english')
|
82 |
+
tfidf_matrix = tfidf_vectorizer.fit_transform(texts)
|
83 |
+
|
84 |
+
def extract_key_features(text):
|
85 |
+
# Use Spacy to extract technical terms and phrases
|
86 |
+
doc = nlp(text)
|
87 |
+
technical_terms = []
|
88 |
+
for token in doc:
|
89 |
+
if token.dep_ in ('amod', 'compound') or token.ent_type_ in ('PRODUCT', 'ORG', 'GPE', 'NORP'):
|
90 |
+
technical_terms.append(token.text.lower())
|
91 |
+
noun_phrases = [chunk.text.lower() for chunk in doc.noun_chunks]
|
92 |
+
feature_phrases = [sent.text.lower() for sent in doc.sents if re.search(r'(comprising|including|consisting of|deformable|insulation|heat-resistant|memory foam|high-temperature)', sent.text, re.IGNORECASE)]
|
93 |
+
|
94 |
+
all_features = technical_terms + noun_phrases + feature_phrases
|
95 |
+
return list(set(all_features))
|
96 |
+
|
97 |
def compare_features(query_features, patent_features):
|
98 |
common_features = set(query_features) & set(patent_features)
|
99 |
similarity_score = len(common_features) / max(len(query_features), len(patent_features))
|
|
|
101 |
|
102 |
def hybrid_search(query, top_k=5):
|
103 |
print(f"Original query: {query}")
|
104 |
+
|
105 |
+
query_features = extract_key_features(query)
|
106 |
+
|
107 |
+
# Encode the query using the transformer model
|
108 |
+
query_embedding = encode_texts([query])[0]
|
109 |
query_embedding = query_embedding / np.linalg.norm(query_embedding)
|
110 |
+
|
111 |
# Perform semantic similarity search
|
112 |
semantic_distances, semantic_indices = index.search(np.array([query_embedding]).astype('float32'), top_k * 2)
|
113 |
+
|
114 |
# Perform TF-IDF based search
|
115 |
+
query_tfidf = tfidf_vectorizer.transform([query])
|
116 |
tfidf_similarities = cosine_similarity(query_tfidf, tfidf_matrix).flatten()
|
117 |
tfidf_indices = tfidf_similarities.argsort()[-top_k * 2:][::-1]
|
118 |
+
|
119 |
# Combine and rank results
|
120 |
combined_results = {}
|
121 |
for i, idx in enumerate(semantic_indices[0]):
|
|
|
128 |
'common_features': common_features,
|
129 |
'text': text
|
130 |
}
|
131 |
+
|
132 |
for idx in tfidf_indices:
|
133 |
patent_number = patent_numbers[idx].decode('utf-8')
|
134 |
if patent_number not in combined_results:
|
|
|
140 |
'common_features': common_features,
|
141 |
'text': text
|
142 |
}
|
143 |
+
|
144 |
# Sort and get top results
|
145 |
top_results = sorted(combined_results.items(), key=lambda x: x[1]['score'], reverse=True)[:top_k]
|
146 |
+
|
147 |
results = []
|
148 |
for patent_number, data in top_results:
|
149 |
result = f"Patent Number: {patent_number}\n"
|
|
|
151 |
result += f"Combined Score: {data['score']:.4f}\n"
|
152 |
result += f"Common Key Features: {', '.join(data['common_features'])}\n\n"
|
153 |
results.append(result)
|
154 |
+
|
155 |
return "\n".join(results)
|
156 |
|
157 |
+
# Create Gradio interface with additional input fields
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
iface = gr.Interface(
|
159 |
fn=hybrid_search,
|
160 |
inputs=[
|
|
|
167 |
)
|
168 |
|
169 |
if __name__ == "__main__":
|
170 |
+
iface.launch()
|