Bhaskar Saranga
cuda validation for v8 predictions
d2228f2
raw
history blame
11.4 kB
import torch
import gradio as gr
import cv2
import numpy as np
import random
import numpy as np
from models.experimental import attempt_load
from utils.general import check_img_size, non_max_suppression, \
scale_coords
from utils.plots import plot_one_box
from utils.torch_utils import time_synchronized
import time
from ultralytics import YOLO
from track import MOT
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleup=True, stride=32):
# Resize and pad image while meeting stride-multiple constraints
shape = im.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
if not scaleup: # only scale down, do not scale up (for better val mAP)
r = min(r, 1.0)
# Compute padding
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
if auto: # minimum rectangle
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
dw /= 2 # divide padding into 2 sides
dh /= 2
if shape[::-1] != new_unpad: # resize
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
return im, r, (dw, dh)
names = ["animal",
"autorickshaw",
"bicycle",
"bus",
"car",
"motorcycle",
"person",
"rider",
"traffic light",
"traffic sign",
"truck"
]
#colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
colors = {
"animal": [246,198, 145],
"autorickshaw": [255,204, 54],
"bicycle": [119,11, 32],
"bus": [ 0,60,100],
"car": [ 0,0,142],
"motorcycle": [ 0,0,230],
"person": [220,20, 60],
"rider": [255,0, 0],
"traffic light": [250,170, 30],
"traffic sign": [220,220, 0],
"truck": [ 0,0, 70]
}
def detectv7(img,model,device,iou_threshold=0.45,confidence_threshold=0.25):
imgsz = 640
img = np.array(img)
stride = int(model.stride.max()) # model stride
imgsz = check_img_size(imgsz, s=stride) # check img_size
# Get names and colors
names = model.module.names if hasattr(model, 'module') else model.names
# Run inference
imgs = img.copy() # for NMS
image, ratio, dwdh = letterbox(img, auto=False)
image = image.transpose((2, 0, 1))
img = torch.from_numpy(image).to(device)
img = img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = time_synchronized()
start = time.time()
with torch.no_grad(): # Calculating gradients would cause a GPU memory leak
pred = model(img,augment=True)[0]
fps_inference = 1/(time.time()-start)
t2 = time_synchronized()
# Apply NMS
pred = non_max_suppression(pred, confidence_threshold, iou_threshold, classes=None, agnostic=True)
t3 = time_synchronized()
for i, det in enumerate(pred): # detections per image
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], imgs.shape).round()
# Write results
for *xyxy, conf, cls in reversed(det):
label = f'{names[int(cls)]} {conf:.2f}'
plot_one_box(xyxy, imgs, label=label, color=colors[names[int(cls)]], line_thickness=1)
return imgs,fps_inference
def detectv8(img,model,device,iou_threshold=0.45,confidence_threshold=0.25):
img = np.array(img)
# Inference
t1 = time_synchronized()
start = time.time()
results= model.predict(img,conf=confidence_threshold, iou=iou_threshold)
fps_inference = 1/(time.time()-start)
if torch.cuda.is_available():
boxes= results[0].boxes.cpu().detach().numpy()
else:
boxes=results[0].boxes.numpy()
for bbox in boxes:
#print(f'{colors[names[int(bbox.cls[0])]]}')
label = f'{names[int(bbox.cls[0])]} {bbox.conf[0]:.2f}'
plot_one_box(bbox.xyxy[0],img,colors[names[int(bbox.cls[0])]],label, line_thickness=1)
return img,fps_inference
def inference(img,model_link,iou_threshold,confidence_threshold):
print(model_link)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# Load model
model_path = 'weights/'+str(model_link)+'.pt'
if model_link== 'yolov8m':
model = YOLO(model_path)
return detectv8(img,model,device,iou_threshold,confidence_threshold)
else:
model = attempt_load(model_path, map_location=device)
return detectv7(img,model,device,iou_threshold,confidence_threshold)
def inference2(video,model_link,iou_threshold,confidence_threshold):
print(model_link)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# Load model
model_path = 'weights/'+str(model_link)+'.pt'
if model_link== 'yolov8m':
model = YOLO(model_path)
else:
model = attempt_load(model_path, map_location=device)
frames = cv2.VideoCapture(video)
fps = frames.get(cv2.CAP_PROP_FPS)
image_size = (int(frames.get(cv2.CAP_PROP_FRAME_WIDTH)),int(frames.get(cv2.CAP_PROP_FRAME_HEIGHT)))
finalVideo = cv2.VideoWriter('output.mp4',cv2.VideoWriter_fourcc(*'VP90'), fps, image_size)
fps_video = []
while frames.isOpened():
ret,frame = frames.read()
if not ret:
break
if model_link== 'yolov8m':
frame,fps = detectv8(frame,model,device,iou_threshold,confidence_threshold)
else:
frame,fps = detectv7(frame,model,device,iou_threshold,confidence_threshold)
fps_video.append(fps)
finalVideo.write(frame)
frames.release()
finalVideo.release()
return 'output.mp4',np.mean(fps_video)
def inference_comp(image,iou_threshold,confidence_threshold):
v8_out, v8_fps = inference(image, "yolov8m",iou_threshold,confidence_threshold)
v7_out, v7_fps = inference(image, "yolov7",iou_threshold,confidence_threshold)
return v7_out,v8_out,v7_fps,v8_fps
def MODT(sourceVideo, trackingmethod):
#model_path = 'weights/'+str(model_link)+'.pt'
model_path = 'weights/yolov8m.pt'
return MOT(model_path, trackingmethod, sourceVideo), 30
examples_images = ['data/images/1.jpg',
'data/images/2.jpg',
'data/images/bus.jpg',
'data/images/3.jpg']
examples_videos = ['data/video/1.mp4','data/video/2.mp4']
models = ['yolov8m','yolov7','yolov7t']
trackers = ['strongsort', 'bytetrack', 'ocsort']
with gr.Blocks() as demo:
gr.Markdown("## IDD Inference on Yolo V7 and V8 ")
with gr.Tab("Image"):
gr.Markdown("## Yolo V7 and V8 Inference on Image")
with gr.Row():
image_input = gr.Image(type='pil', label="Input Image", source="upload")
image_output = gr.Image(type='pil', label="Output Image", source="upload")
fps_image = gr.Number(0,label='FPS')
image_drop = gr.Dropdown(choices=models,value=models[0])
image_iou_threshold = gr.Slider(label="IOU Threshold",interactive=True, minimum=0.0, maximum=1.0, value=0.5)
image_conf_threshold = gr.Slider(label="Confidence Threshold",interactive=True, minimum=0.0, maximum=1.0, value=0.6)
gr.Examples(examples=examples_images,inputs=image_input,outputs=image_output)
text_button = gr.Button("Detect")
with gr.Tab("Video"):
gr.Markdown("## Yolo V7 and V8 Inference on Video")
with gr.Row():
video_input = gr.Video(type='pil', label="Input Video", source="upload")
video_output = gr.Video(type="pil", label="Output Video",format="mp4")
fps_video = gr.Number(0,label='FPS')
video_drop = gr.Dropdown(label="Model", choices=models,value=models[0])
video_iou_threshold = gr.Slider(label="IOU Threshold",interactive=True, minimum=0.0, maximum=1.0, value=0.5)
video_conf_threshold = gr.Slider(label="Confidence Threshold",interactive=True, minimum=0.0, maximum=1.0, value=0.6)
gr.Examples(examples=examples_videos,inputs=video_input,outputs=video_output)
with gr.Row():
video_button_detect = gr.Button("Detect")
with gr.Tab("Compare Models"):
gr.Markdown("## YOLOv7 vs YOLOv8 Object detection comparision")
with gr.Row():
image_comp_input = gr.Image(type='pil', label="Input Image", source="upload")
with gr.Row():
image_comp_iou_threshold = gr.Slider(label="IOU Threshold",interactive=True, minimum=0.0, maximum=1.0, value=0.5)
image_comp_conf_threshold = gr.Slider(label="Confidence Threshold",interactive=True, minimum=0.0, maximum=1.0, value=0.6)
text_comp_button = gr.Button("Detect")
with gr.Row():
image_comp_output_v7 = gr.Image(type='pil', label="YOLOv7 Output Image", source="upload")
image_comp_output_v8 = gr.Image(type='pil', label="YOLOv8 Output Image", source="upload")
with gr.Row():
v7_fps_image = gr.Number(0,label='v7 FPS')
v8_fps_image = gr.Number(0,label='v8 FPS')
gr.Examples(examples=examples_images,inputs=image_comp_input,outputs=[image_comp_output_v7,image_comp_output_v8])
with gr.Tab("Video Tacking"):
gr.Markdown("## MOT using YoloV8 detection with tracking")
with gr.Row():
videotr_input = gr.Video(type='pil', label="Input Video", source="upload")
videotr_output = gr.Video(type="pil", label="Output Video",format="mp4")
fpstr_video = gr.Number(0,label='FPS')
tracking_drop = gr.Dropdown(choices=trackers,value=trackers[0], label="Select the tracking method")
videotr_iou_threshold = gr.Slider(label="IOU Threshold",interactive=True, minimum=0.0, maximum=1.0, value=0.5)
videotr_conf_threshold = gr.Slider(label="Confidence Threshold",interactive=True, minimum=0.0, maximum=1.0, value=0.6)
gr.Examples(examples=examples_videos,inputs=videotr_input,outputs=videotr_output)
video_button_track = gr.Button("Track")
text_button.click(inference, inputs=[image_input,image_drop,
image_iou_threshold,image_conf_threshold],
outputs=[image_output,fps_image])
video_button_detect.click(inference2, inputs=[video_input,video_drop,
video_iou_threshold,video_conf_threshold],
outputs=[video_output,fps_video])
text_comp_button.click(inference_comp,inputs=[image_comp_input,
image_comp_iou_threshold,
image_comp_conf_threshold],
outputs=[image_comp_output_v7,image_comp_output_v8,v7_fps_image,v8_fps_image])
video_button_track.click(MODT,inputs=[videotr_input, tracking_drop],
outputs=[videotr_output, fpstr_video])
demo.launch(debug=True,enable_queue=True)