IDD-AsOne / utils /torch_utils.py
bhasker412's picture
Duplicate from bhasker412/IDD-Yolov7
fd7f189
raw
history blame
15.5 kB
# YOLOR PyTorch utils
import datetime
import logging
import math
import os
import platform
import subprocess
import time
from contextlib import contextmanager
from copy import deepcopy
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torchvision
try:
import thop # for FLOPS computation
except ImportError:
thop = None
logger = logging.getLogger(__name__)
@contextmanager
def torch_distributed_zero_first(local_rank: int):
"""
Decorator to make all processes in distributed training wait for each local_master to do something.
"""
if local_rank not in [-1, 0]:
torch.distributed.barrier()
yield
if local_rank == 0:
torch.distributed.barrier()
def init_torch_seeds(seed=0):
# Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
torch.manual_seed(seed)
if seed == 0: # slower, more reproducible
cudnn.benchmark, cudnn.deterministic = False, True
else: # faster, less reproducible
cudnn.benchmark, cudnn.deterministic = True, False
def date_modified(path=__file__):
# return human-readable file modification date, i.e. '2021-3-26'
t = datetime.datetime.fromtimestamp(Path(path).stat().st_mtime)
return f'{t.year}-{t.month}-{t.day}'
def git_describe(path=Path(__file__).parent): # path must be a directory
# return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
s = f'git -C {path} describe --tags --long --always'
try:
return subprocess.check_output(s, shell=True, stderr=subprocess.STDOUT).decode()[:-1]
except subprocess.CalledProcessError as e:
return '' # not a git repository
def select_device(device='', batch_size=None):
# device = 'cpu' or '0' or '0,1,2,3'
s = f'YOLOR 🚀 {git_describe() or date_modified()} torch {torch.__version__} ' # string
cpu = device.lower() == 'cpu'
if cpu:
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
elif device: # non-cpu device requested
os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availability
cuda = not cpu and torch.cuda.is_available()
if cuda:
n = torch.cuda.device_count()
if n > 1 and batch_size: # check that batch_size is compatible with device_count
assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
space = ' ' * len(s)
for i, d in enumerate(device.split(',') if device else range(n)):
p = torch.cuda.get_device_properties(i)
s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB
else:
s += 'CPU\n'
logger.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe
return torch.device('cuda:0' if cuda else 'cpu')
def time_synchronized():
# pytorch-accurate time
if torch.cuda.is_available():
torch.cuda.synchronize()
return time.time()
def profile(x, ops, n=100, device=None):
# profile a pytorch module or list of modules. Example usage:
# x = torch.randn(16, 3, 640, 640) # input
# m1 = lambda x: x * torch.sigmoid(x)
# m2 = nn.SiLU()
# profile(x, [m1, m2], n=100) # profile speed over 100 iterations
device = device or torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
x = x.to(device)
x.requires_grad = True
print(torch.__version__, device.type, torch.cuda.get_device_properties(0) if device.type == 'cuda' else '')
print(f"\n{'Params':>12s}{'GFLOPS':>12s}{'forward (ms)':>16s}{'backward (ms)':>16s}{'input':>24s}{'output':>24s}")
for m in ops if isinstance(ops, list) else [ops]:
m = m.to(device) if hasattr(m, 'to') else m # device
m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m # type
dtf, dtb, t = 0., 0., [0., 0., 0.] # dt forward, backward
try:
flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPS
except:
flops = 0
for _ in range(n):
t[0] = time_synchronized()
y = m(x)
t[1] = time_synchronized()
try:
_ = y.sum().backward()
t[2] = time_synchronized()
except: # no backward method
t[2] = float('nan')
dtf += (t[1] - t[0]) * 1000 / n # ms per op forward
dtb += (t[2] - t[1]) * 1000 / n # ms per op backward
s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list'
s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list'
p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters
print(f'{p:12}{flops:12.4g}{dtf:16.4g}{dtb:16.4g}{str(s_in):>24s}{str(s_out):>24s}')
def is_parallel(model):
return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
def intersect_dicts(da, db, exclude=()):
# Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
def initialize_weights(model):
for m in model.modules():
t = type(m)
if t is nn.Conv2d:
pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif t is nn.BatchNorm2d:
m.eps = 1e-3
m.momentum = 0.03
elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
m.inplace = True
def find_modules(model, mclass=nn.Conv2d):
# Finds layer indices matching module class 'mclass'
return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
def sparsity(model):
# Return global model sparsity
a, b = 0., 0.
for p in model.parameters():
a += p.numel()
b += (p == 0).sum()
return b / a
def prune(model, amount=0.3):
# Prune model to requested global sparsity
import torch.nn.utils.prune as prune
print('Pruning model... ', end='')
for name, m in model.named_modules():
if isinstance(m, nn.Conv2d):
prune.l1_unstructured(m, name='weight', amount=amount) # prune
prune.remove(m, 'weight') # make permanent
print(' %.3g global sparsity' % sparsity(model))
def fuse_conv_and_bn(conv, bn):
# Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
fusedconv = nn.Conv2d(conv.in_channels,
conv.out_channels,
kernel_size=conv.kernel_size,
stride=conv.stride,
padding=conv.padding,
groups=conv.groups,
bias=True).requires_grad_(False).to(conv.weight.device)
# prepare filters
w_conv = conv.weight.clone().view(conv.out_channels, -1)
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
# prepare spatial bias
b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
return fusedconv
def model_info(model, verbose=False, img_size=640):
# Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
n_p = sum(x.numel() for x in model.parameters()) # number parameters
n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
if verbose:
print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
for i, (name, p) in enumerate(model.named_parameters()):
name = name.replace('module_list.', '')
print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
(i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
try: # FLOPS
from thop import profile
stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32
img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input
flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPS
img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float
fs = ', %.1f GFLOPS' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPS
except (ImportError, Exception):
fs = ''
logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
def load_classifier(name='resnet101', n=2):
# Loads a pretrained model reshaped to n-class output
model = torchvision.models.__dict__[name](pretrained=True)
# ResNet model properties
# input_size = [3, 224, 224]
# input_space = 'RGB'
# input_range = [0, 1]
# mean = [0.485, 0.456, 0.406]
# std = [0.229, 0.224, 0.225]
# Reshape output to n classes
filters = model.fc.weight.shape[1]
model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
model.fc.out_features = n
return model
def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
# scales img(bs,3,y,x) by ratio constrained to gs-multiple
if ratio == 1.0:
return img
else:
h, w = img.shape[2:]
s = (int(h * ratio), int(w * ratio)) # new size
img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
if not same_shape: # pad/crop img
h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
def copy_attr(a, b, include=(), exclude=()):
# Copy attributes from b to a, options to only include [...] and to exclude [...]
for k, v in b.__dict__.items():
if (len(include) and k not in include) or k.startswith('_') or k in exclude:
continue
else:
setattr(a, k, v)
class ModelEMA:
""" Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
Keep a moving average of everything in the model state_dict (parameters and buffers).
This is intended to allow functionality like
https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
A smoothed version of the weights is necessary for some training schemes to perform well.
This class is sensitive where it is initialized in the sequence of model init,
GPU assignment and distributed training wrappers.
"""
def __init__(self, model, decay=0.9999, updates=0):
# Create EMA
self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA
# if next(model.parameters()).device.type != 'cpu':
# self.ema.half() # FP16 EMA
self.updates = updates # number of EMA updates
self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
for p in self.ema.parameters():
p.requires_grad_(False)
def update(self, model):
# Update EMA parameters
with torch.no_grad():
self.updates += 1
d = self.decay(self.updates)
msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict
for k, v in self.ema.state_dict().items():
if v.dtype.is_floating_point:
v *= d
v += (1. - d) * msd[k].detach()
def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
# Update EMA attributes
copy_attr(self.ema, model, include, exclude)
class BatchNormXd(torch.nn.modules.batchnorm._BatchNorm):
def _check_input_dim(self, input):
# The only difference between BatchNorm1d, BatchNorm2d, BatchNorm3d, etc
# is this method that is overwritten by the sub-class
# This original goal of this method was for tensor sanity checks
# If you're ok bypassing those sanity checks (eg. if you trust your inference
# to provide the right dimensional inputs), then you can just use this method
# for easy conversion from SyncBatchNorm
# (unfortunately, SyncBatchNorm does not store the original class - if it did
# we could return the one that was originally created)
return
def revert_sync_batchnorm(module):
# this is very similar to the function that it is trying to revert:
# https://github.com/pytorch/pytorch/blob/c8b3686a3e4ba63dc59e5dcfe5db3430df256833/torch/nn/modules/batchnorm.py#L679
module_output = module
if isinstance(module, torch.nn.modules.batchnorm.SyncBatchNorm):
new_cls = BatchNormXd
module_output = BatchNormXd(module.num_features,
module.eps, module.momentum,
module.affine,
module.track_running_stats)
if module.affine:
with torch.no_grad():
module_output.weight = module.weight
module_output.bias = module.bias
module_output.running_mean = module.running_mean
module_output.running_var = module.running_var
module_output.num_batches_tracked = module.num_batches_tracked
if hasattr(module, "qconfig"):
module_output.qconfig = module.qconfig
for name, child in module.named_children():
module_output.add_module(name, revert_sync_batchnorm(child))
del module
return module_output
class TracedModel(nn.Module):
def __init__(self, model=None, device=None, img_size=(640,640)):
super(TracedModel, self).__init__()
print(" Convert model to Traced-model... ")
self.stride = model.stride
self.names = model.names
self.model = model
self.model = revert_sync_batchnorm(self.model)
self.model.to('cpu')
self.model.eval()
self.detect_layer = self.model.model[-1]
self.model.traced = True
rand_example = torch.rand(1, 3, img_size, img_size)
traced_script_module = torch.jit.trace(self.model, rand_example, strict=False)
#traced_script_module = torch.jit.script(self.model)
traced_script_module.save("traced_model.pt")
print(" traced_script_module saved! ")
self.model = traced_script_module
self.model.to(device)
self.detect_layer.to(device)
print(" model is traced! \n")
def forward(self, x, augment=False, profile=False):
out = self.model(x)
out = self.detect_layer(out)
return out